Implementation Issues in
Networked Embedded Control Systems

References/Copyright

* FlexRay material from National Instruments tutorial

« AFDX/ARINC material and figures taken from GE Intelligent
Platforms, “AFDX/ARINC 664 tutorial”

Goal

Discuss current implementation practices for real-time
networked embedded systems, specifically for digital control
applications.

Underlying motivation:

— better modeling and understanding of impact of
implementation on control algorithms. Develop more
realistic analysis of the behavior of modern sampled-data
systems.

— more robust/dependable/convenient/efficient initial
control designs. Reduce the gap between control design
stage and implementation stage.

Desired Development Process

Typical Software Development Process it Model-Based System Engineering

| Manual, Paper Intensive, Error Prone, Resistant to Change | [Predictive Analysis Early In & Throughout Life Cycle]

P s

yL L}
i

Requirements T System

& Analysis N2 Integration
Requirements
Analysis Implementation Integration Architecture Predictable System

Modeling & Rapid Integration

High Development & High Risk Analysis Upgradeability
Maintenance Cost System Integration Reduced Cost

Architecture-Driven Development

AADL Tutorial AADL Tutorial

[AADL presentation: Bruce Lewis and Peter Feiler]

Holy grail of Model-Based Engineering, essentially...

Probably not achievable without rethinking the interfaces between the disciplines and using domain specific
knowledge. This in turns require the knowledge of several disciplines (e.g. control design and real-time system
programming).

Automotive Electronics

> -

.
rFl-RDS
FMI-SWIFT

Interface

FM/DAB —————n Ap plication
Radio == Processing
ata-Bus

CSM-SNS
GSM-GPRS 7

UMIrs

Federated vs. IMA

Flight Controls
Flight Management
inertial Reference System|

Displays
Navigation Computer
Mission Computer

Federated vs. IMA

Flight Controls
Flight Management
inertial Reference System|

Displays
Navigation Computer
Mission Computer

Weapons Control
Stores Management FLIR
Targeting Computer EO/OP

Radar
Sensor systems
FLIR
EO/OP

Weapons Control
Stores Management
Targeting Computer

Engine Controls
Engine Monitoring
Fire Control

Sensor systems

Engine Controls
Engine Monitoring
Fire Control

Courtesy of ©Wind River Inc. 2008 — IEEE-CS Seminar ~ June 4, 2008 Courtesy of ©Wind River Inc. 2008 ~ IEEE-CS Seminar - June 4%, 2008

[© Wind River] @

Azimuth data Avionics Computer System
—>

Twisted-pair copper wire

ITmnsmitterI | Receiver | | Receiver | Receiver
Inertial Autoniot . Other Avionics
Platform pre Display S Controllers Subsystem
Partition 1
Simplex
100 Kbps (maximum)
ARINC 429 Up to 20 receivers Avionics End AFDX AFDX
Sensors Subsystem System switch Network
Partition 2
Switch
Two pairs §:> <# Avionics
category 5 UTP L
twisted-pair 94> Actuators Subsystem
copperwire Partition 3
d End
SyEst"em SyEs':zm 5ys’t‘em
. Other
Inertial Heads-up
Platform Display. Systems,
etc.
ARINC 653 ARINC 664, Part 7
Full duplex Sampling ports AFDX communications ports
U| . .
100 Mbpg (maximum) Queuing ports éomp_llng PO'['[S
Number of connections ueuing ports
d by numb ; ;
AFDX g;’:@" :ceh poyr{‘S”"‘ &7 [@ GE] Service access point port

Variety of Control System Architectures

Controller

4 M
¥
=~

(CPU)
e

So far: single processor directly
connected to the plant and dedicated to
the control task

We need to improve our sample-data
system models to rigorously and

efficiently design control loops on such
systems (e.g. simplify system integration)

For this, we must know a
resource management

ittle bit about

oractice for

networks and processors

Digital Control Issues in Complex
Embedded Systems

Various components of the control loops are now connected via
communication network

— communication delays, lost messages
The communication medium tends to be shared by several applications
— need management of communication resources
The CPUs are not necessarily dedicated to the control tasks, but shared by

other tasks, safety critical and non safety critical

— need management of computation resources, typically by Real-Time Operating
System (RTOS) scheduler

The system design choices for communication and computation (hardware,
protocols, etc.) are not necessarily dictated by the control engineers !!
(cost, in many industries, is a big factor; power, ...)

— E.g. CAN networks in automotive application introduce time-varying delays, bad
from control perspective. Still, control and other timing concerns tends to
slowly influence choices (TT-CAN, FlexRay, AFDX...).

— Desire to use Commercial Off-the-shelf (COTS) components, reuse components
and software (e.g. OS) from other/previous systems.

Design Approaches and Questions

Design control loops as usual, ignoring implementation issues

— Research question: analyze the impact of implementation choices on
performance

Control and Embedded System Co-design: design control loops together
with the scheduling policies, communication protocols, etc.

— Popular research topic, probably often not a viable possibility due to previously
mentioned design constraints. Can try to implement solution on top of given
protocol (e.g. control server scheduled periodically by RTOS).

Design implementation aware control loops.

— Add compensating mechanisms within the control laws, for delays, jitter, packets
losses.

Control laws more complex to implement, but we are (as much as possible) only
modifying the control systems, not the global system design.

Expect potential loss in performance wrt co-design, but should be better than
ignoring issues. Also, in this approach, we would like to allow various possible
choices of implementations at a later system design stage: leave more freedom to
the systems engineer, allow for subsequent changes, increase possibilities of
component reuse, etc.

Control Networks

Communication Network

Initially point-to-point communications between all
subsystems of a control loop

Replaced now usually by wired data bus (with or without bus
controller); sometimes switched networks (AFDX)

Some interest in wireless networks for industrial applications
(e.g. process control) — still controlled environment however,
not ad-hoc networks...

Delays, reliability, jitter, etc. are network and protocol
dependent. Impacts on performance of the control system
must typically be understood.

Automotive Industry Examples (bus
technologies)

De facto Standard in Automotive Industry: CAN (Controller Area Network), first version
released by Bosch in 1986, first chips by Intel and Philips in 1987.

CAN enables communication between ECUs, actuators and sensors: e.g. engine control unit,
transmission, airbags, ABS, cruise control subsystems; control loops might share the same bus.

Medium cost = used now in other industrial distributed control applications (fieldbus). Speed:
1 Mbit/s for up to 40m.

If the bus is free, any node may begin to transmit. Message with dominant id overwrites
others in case of collision. Non-determinism, time-varying delays are potential issues for
control applications. Does not guarantee timely delivery of data nor very high rates.

Another ex. of protocol for control systems: TTP (Time-Triggered Protocol), originally designed
at the Vienna University of Technology in the early 80s (Kopetz et al.). TDMA = Time Division
Multiple Access - timing more predictable, minimal jitter. Necessary clock synchronization.
TDMA can also waste bandwidth if traffic not predictable.

FlexRay: time- and event-triggered behavior, to accommodate different types of traffic
(periodic and sporadic). Developed between 2000 and 2009 by companies in the automotive
industry (mostly BMW) as possible future direction. Higher data rates (up to 10 Mbit/s), but
currently more expensive = currently for high-end applications.

Bus LIN ICAN FlexRay

Speed 40 kbit/s 1 Mbit/s 10 Mbit/s

Cost $ $$ $$$

(Wires 1 2 2 or 4

[Typical Applications Body Electronics (Mirrors, Power |Powertrain (Engine, High-Performance Powertrain,
Seats, Accesories) ITransmission, ABS) Safety (Drive-by-wire, active
lsuspension, adaptive cruise
control)

FlexRay

Network Topologies

Multi-drop Bus: like CAN. Star Network: longer distances, network Hybrid Networks
Simplify evolution, lower cost segmentation possible for fault isolation,
better performance (e.g. noise integrity)

A =y =y and reliability

Pre-set communication cycle, typically around
1-5ms

Time-triggered segment for deterministic data
arriving in predictable time frame

CAN-like segment for dynamic event-driven
data

Length of each segment is a design parameter

Symbol window: for network maintenance and

start \ low-level

Idle Time: to maintain synchronization
between node clocks. Synchr. to ~1us

o = 7<=

FlexRay Communication Cycle
Cycle Start Cycle time: 1 ms

e B

Static Segment
Dynamic Segment ——
Symbol Window ———
Network Idle Time ——

Static Segment

TT segment is very useful for control loops. Gives consistently spaced data.

If an ECU does not transmit data in one of its slots, it is not used.

Each slot of a static or dynamic segment contains a FlexRay frame. Length of
payload of a frame is 0...254 bytes (>30 times CAN frame payload).

Synchronization using Sync frames broadcasted by pre-designated nodes.

15

In-cycle control

_ Cycle time: 1 ms

-Read Data Process Update
Suspension

Figure 13. In-cycle control reading 4 wheel positions and updating a vehicle control output in a single
FlexRay cycle.

Possibility of high-speed control rates: can read sensors and update control input
within same cycle

16

Dynamic Segment

Minislots are unused dﬁnamic slots
1 |

bedrly :

For occasionally transmitted data
Fixed length

Higher priority data eligible for transmission in dynamic segment receive a minislot
closer to the beginning of the dynamic frame

If ECU doesn’t broadcast in its minislot, it loses its spot. Process continues until and
ECU starts broadcasting. End-result similar to CAN arbitration.
17

Some Differences between Embedded
Networks and other Networks

« Embedded networks: closed configuration, does not change
one assembled.

— Eliminates need for some mechanisms like discover and
configure devices at run-time

— Reduces cost, increases reliability of network
e With FlexRay network (and TDMA more generally), each

participating node must be configured correctly and know all
the parameters of the network.

— higher implementation complexity and cost than CAN, but
better features for control

Network Delays

Delays due to resolution of resource contention (two mechanisms discussed before)

Size of individual network reservation slots determined by size of frame
— CAN high-speed at 1 Mbit/s frame (bus length < 40m). 1 bit=1 pus
— CAN extended frame ~128-134 bits. Variable due to bit stuffing. - frame duration is ~ 134 ps.

Some time reserved for network maintenance (e.g. synchronization)

Propagation delay:
— obviously depends on (in fact imposes limit on) the bus length

— ~5ns/m typical for twisted-pair line of CAN (~3.33 ns/m is speed of light)

Conclusions:

1. For many embedded control applications over short networks, e.g. automotive applications: delays
mostly due to resource contention. Need to wait for other nodes to finish transmitting. Can optimize
sampling times to minimize some of these delays, in particular with TT protocols.

When the network length increases, propagation delay can become an issue. Typical control
applications are in teleoperation (e.g. robotic surgery or exploration). E.g. control of a robotic arm in
Washington over the internet, with surgeon in California: round-trip delay is ~60-75ms and highly
variable (TCP/IP not really made for control...).

For unreliable networks (non-negligible drop rate), can trade-off transmission probability for
transmission delay (as in UDP vs. TCP).

Network Delay Models for Control

In my opinion, in the literature on networked control systems, it is too often left unclear what the
targeted applications and corresponding important sources of delays are. Would benefit by stating
more precise and realistic network properties.

Propagation delay tends to be emphasized

* Due to extensive literature and many mathematical results on delay in control, applying to NECS
seems convenient

Relevant mostly for large networks: multi-robot communications, control of the electric grid, ...

In practice, in particular for teleoperation, special techniques have been introduced somewhat
independently to deal with large network delays and variability

* For teleoperation, based on passivity and “wave variables”: Anderson and Spong [88],
Niemeyer and Slotine [91]. Mostly for high transmission probability (TCP rather than UDP).

For many NECS applications with short networks, choices of models seems debatable. E.g.: SISO
systems or MIMO with all sensors communicating simultaneously (single frame?) yet subject to large
network delays

e presumably propagation delay?
* orverylong frame (containing many measurements)?
» or high load already on the network? realistic for control network?

Why would the sensors communicate all at once? In practice many sensors with different
sampling rates (e.g. IMU at 1000 Hz vs. GPS at 1 Hz)

Avionics Example: AFDX
(switch technology)

All electronic fly-by-wire now only control system used on
new airliners

Other on-board safety-critical system systems rely on timely
delivery of data: communications, inertial platforms, etc.

“Avionics Full-DupleX, switched Ethernet”. Original concept

by Airbus. Evolved into a standard: IEEE 802.3 (Ethernet
frame format) and ARINC 664, Part 7.

Used by Airbus for A380

Similar system (ARINC 629) used by Boeing for 777
Dreamliner

Replaces ARINC 429 (point-to-point technology), and also

MIL-STD 1553 (bus technology). Higher data rate: 100 Mbps,
1000 times faster than ARINC 429.

Avionics Networks

MIL-STD 1553 DATA BUS

ARINC 429

Source BC
Bit-rate 1 Mbps

. . . . 20-bit data word
Receiver Receiver Receiver Receiver

Bit rates are either 100 Kbps or 12.5 Kbps Azimuth data

3 Z-blt messages — Twisted-pair copper wire

Transmitter| | Receiver | | Receiver | Receiver

Inertial Other

p Heads-up
A F DX Platform Autopilot Gy Sysettims,

Avionics Computer System Simplex

100 Kbps (maximum)
ARINC 429 Up to 20 receivers

Controllers

Avionics
Subsystem

Actuators Switch
AFDX

Interconnect Two pairs S s
category 5 UTP

twisted-pair 94—
Controllers 1

copper wire
Sensors Avionics End d |
| 'H H Gatewa q End End End
=l bSyStem SyStem y | System | System System
Actuators 1
Inertial Heads-up Other

.. Platform Display Systtems,
Avionics Computer System etc.

4

Avionics Computer System

Full duplex

100 Mbps (maximum)
Number of connections
governed by number
of switch ports

AFDX is Based on Ethernet

benefits from many investments and advancements
since 1972

Ethernet has no centralized bus control: Transmissions
can collide. “CSMA/CD” protocol (Carrier Sense,

Multiple Access, and Collision Detection)

 If you have a message to send and the medium is idle, send the
message.

 If the message collides with another transmission, try sending the
message later using a suitable back-off strategy = non-
deterministic behavior, possibility of repeated collisions

Ethernet frame between 64 and 1518 bytes

Ethernet comm. is connectionless. ACK must be
handled at higher levels in the protocol stack

AFDX: Full-duplex, Switched Ethernet

With Ethernet, very large transmission delays
are theoretically possible

AFDX bounds the max. transmission time
between a Tx and a Rx

Moves from Half-duplex Ethernet to Full-duplex
Switched Ethernet to eliminate possibility of
collisions

Now switch needs to move packets from Rx to
Tx buffers through memory bus (store and
forward architecture). Delays possible due to
congestion at the switch

Each buffer can store multiple packets in FIFO
order. Requirements on avionics subsystems to
avoid overflow.

Delay and jitter introduced in message
transmission times when waiting for other
messages to be transmitted, at end system and
at switch

Multiple switches can be connected

Redundancy: an AFDX system consists in fact of
two independent networks sending the same
packets between end systems

AFDX Switch

Forwarding Table

1/0 Processing Unit
(CPU)

Memory Bus

N

T

2
T 2

T

Rx Tx

Rx Tx

Rx TX

N ¢

N ¢

N ¢

End
System

Autopilot

End
System

Heads-up
Display

End
System

Other
Systems,
etc.

Full Duplex
Links

Avionics
Subsystems

Message Flows

Packets (AFDX frames, almost identical
to Ethernet frames) are sent between
End Systems using “Virtual Links” (VLs)

Total 100 Mbps bandwidth at each
end system is shared between VLs

The bandwidth of each VL is limited:
mandatory gaps between messages,
max. size of frames

— bandwidth choice depends on
applications connecting to end system
via comm. ports

bandwidth restrictions enforced by
source End Systems, using VL
scheduling algorithms.

VL scheduler also multiplexes the VL
transmission to minimize jitter (req. <=
0.5ms jitter for each VL)

AFDX
Comm Port

Virtual Link 100
BAG=8ms

Lmax = 1518

AFDX
Comm Port

AFDX
Comm Port

Virtual Link 200
BAG =128 ms
Lmax =200

Selects frames
for transmission

Replicates
Ethernet frames

Physical

Virtual Link
Scheduler

Redundancy
Management

Link
—

—

Physical

AFDX
Comm Port

Virtual Link 100
BAG =8 ms
Lmax =1518

AFDX
Comm Port

Link

AFDX Tx and Rx Protocol Stacks

End System Tx Packets End System Rx Packets
AFDX Services Message written to AFDX port t
uop
Transport La)yer
A 4
N
Link Level
(Yirtual Links)
P Ne'twork‘Layer
A o a result of IP fragmentation Drop packet
F 2
W
4
e i fr
Sub VL queue
P NTtwork‘Luyer
e There is direct mapping
¥ only if there is no
!.mk Leyel IP fragmentation
(qutuul Llr'lks)
Network A Network B uop
1 Transport Layer
lAdd “Net A" to Ethernet lAdd “Net B" to Ethernet |
source address source address
Transmit Ethernet Transmit Ethernet AFDX Port Services e AGDARXROt Queue Potential buffer overflow

¥ frame with FCS frame with FCS > AR

Computing Platform Side

Example: ARINC 653

One computer system partitioned in
multiple subsystems

— restrict address space of each partition

Avionics Computer System

— limits on amount of CPU time for each
partition

Avionics
Controllers 3 Subsystem
Partition 1

Avionics applications send messages
using communication ports

.

CIEIIES AFDX AFDX

. . S .
— communication ports are part of OS AP SNS0r8 Subsystem Switch | Network

Partition 2

for portable avionics applications
described in ARINC 653 Avionics

.) Subsyst
Sampling ports and Queuing ports Actuators artition 3

AFDX end system has corresponding
sampling and queuing ports, + Service
Access Point (SAP) ports for comm. with ARING 653 ARINC 664 Part 7
non'AFDX SyStemS Sampling ports AFDX communications ports

Queuing ports Sampling ports

Each sending AFDX comm. ports is Queuing ports

. . . . Service access point port
associated with a single VL transporting
its messages

Delay and jitter introduced in message
transmission times when waiting for
other messages to be transmitted, at end
system (VL scheduling) and at switch

ARINC 653/AFDX Communication Ports

* Sampling Ports
— buffer storage for a single message.

— a message stays in the buffer until overwritten by new
message. Can be read multiple times

— must provide time-stamped messages. Indication of the
freshness of the message in the buffer. Useful for control !

— Adequate for data sampled for control applications

* Queuing Ports

— buffer can store a fixed number of message (configuration
parameter)

— reading a message removes it from the queue (FIFO)

Real-Time Scheduling |

Managing shared computational resources presents challenges similar to managing
communication resources

— single computer system (CPU, ECU = Electronic Control Unit) hosts several
applications, critical and non-critical

Many control applications are implemented on top of a Real-Time Operating System
(RTOS), providing resource management services (communication ports, task
scheduling, ...)

— coding, maintenance, integration, changes... unmanageable if done “by hand”,
without this service. See CIS 541.

RT scheduling theory and algorithms developed independently of application

flexibility useful to develop complex heterogeneous systems

not necessarily compatible with control theoretic assumptions (notion of
periodicity is different - execution time vs. interval)

control loops generally treated as standard hard real-time tasks

Real-Time Scheduling |l

A task consists of a potentially infinite number of jobs, each requiring access to the
CPU to be performed. Can be preemptible or not.

Each job has a release time, a (bound on) computation or execution time (worst
case execution time WCET - need tight timing estimate, maybe difficult) and a
deadline. The deadline can be expressed relative to the release time or as an
absolute time.

A task is periodic if the time between the release of successive jobs is a fixed

constant, called the period of the task (hence task is time-triggered). It is aperiodic
otherwise. Can also distinguish sporadic tasks: aperiodic, with hard deadline (ex:
disengage autopilot). Other def. of sporadic: aperiodic task with load bound.

Objective of the Real-Time scheduler
— guarantee completion of hard real-time tasks by given deadlines

— minimize the service time for aperiodic and non hard real-time requests (ex:
certain operator request)

Low-level control tasks are predictable, but scheduler must accommodate other
tasks with potentially larger variations to reduce cost of the overall system

Issues for RTOS-Based Digital
Controller Implementation |

e Control tasks are not your standard hard real-time task (incompatible abstractions)

— Dol care if implementation can only give me 1.1ms sampling period instead of 1ms?
maybe not, given how | chose the sampling period in the first place... Especially if it is
1.1ms and predictable.

— On the other hand, do | care if the samples are separated sometimes by 0.1ms,
sometimes by 1.9ms?

Most likely, yes... Not least because that doesn’t match my simple model (recall
discretization of systems).

could happen with scheduling period = deadline = 1ms in RT scheduling algorithm.
Just guarantees execution of the control task once every 1ms.

Two very closely separated samples do not give me much new information, actually,
so that’s possibly just unnecessary load on the resources.

Jitter minimization is of some interest in RT scheduling, but that seems to be
considered advanced topic. l.e., maybe not available with scheduling policies
available on most off-the-shelf RTOS. Want at least to impose minimum gap between
executions.

Issues for RTOS-Based Digital
Controller Implementation |

Gap between overall goals of many RTOS, e.g. minimize system
response time to external inputs, vs. precise time-triggered
sampling assumed by control engineers

Computation delays are not deterministic and constant

Good knowledge of RTOS deficiencies can potentially be
compensated by the control algorithm

General purpose RTOS might have to be modified to
implement control loops

Real-Time Scheduling Techniques

* Overview of Static, Fixed-Priority, and Dynamic-Priority Scheduling

e See Slides of Prof. Insup Lee, CIS 541

Conclusions

 Complexity of Practical Systems and standards:

— it is not particularly realistic for the control engineer to
claim access to design of protocols

* ex: AFDX can reuse COTS components and firmware
developed for Ethernet protocol

e cost constraints (e.g. related to development) a big factor

— In contrast, co-design is a popular research topic in the control
literature. you are welcome to follow this path for your
project, but should be aware of this. If possible, try to
integrate your solution within an existing standard (e.g., can a
new protocol be implemented at application layer?)

— Unfortunately, NECS models in current research tend to vastly
oversimplify the problems. We will consider some such
models nonetheless, but be aware that there is a lot of room
for improvements.

Potentially Useful Tools

e AADL for ARINC 653
— ENST Tools: OCARINA and POK

