Verification Procedures and Results of the Spacecraft Docking Emulation using Hardware-in-the-Loop Simulation

CCToMM Symposium 2005 – May 26, 2005

By Sébastien Laurier Chapleau, Éric Martin and Luc Baron
Introduction

• Domain
 - Assembly in orbit
 - Crew exchange
 - Repairs to the spacecraft
 - Re-supply
 - Retrieval of spacecraft

• Need of docking and capture
• Implies contact forces
Outline of Presentation

• The challenge of spacecraft docking
• Pure simulation and experimental methods used
• Research at the CSA
• Verification procedures
• Future tests to be performed
The challenge of Satellite Servicing

- The need to anticipate the dynamic behavior of the spacecraft during the capture and docking
- Necessity of using a good test and simulation facilities

CCToMM Symposium 2005 – May 26, 2005
Pure Simulation Methods

- MDR Contact Dynamics Toolkit (CDT)
- Contact dynamics in Symofros

Disadvantages
- The contact geometries have to be defined
- Contact models are very sensitive to the set of parameters
- Numerical stability of the model

- Pure simulation methods are influenced by input parameters that can be very difficult to identify

CCToMM Symposium 2005 – May 26, 2005
Experimental Methods Used

- MDR’S docking test-bed
- RDOTS (NASDA, Japan)

Disadvantages
- Inertial parameters are difficult to adjust
- Less than 6 degrees-of-freedom (DOF)

CCToMM Symposium 2005 – May 26, 2005
Hardware-in-the-Loop Simulation (HLS) already use at CSA

Special Purpose Dextrous Manipulator (SPDM) Task Verification Facility (STVF)

Space Robot (Matlab/Simulink and Symofros)

Motion of end-effector

HLS

Force plate

CCToMM Symposium 2005 – May 26, 2005
Extending Capabilities of the STVF

STVF with MDR End-Effector

Chaser

Target

Relative motion

MDR End-Effector attached to gripper of the SMT

Force sensor fixed to ground

Spacecraft

Dynamic of spacecrafts

HLS

CHALLENGE EXISTING SIMULATIONS AT THE CSA VERIFICATION PROCEDURES NEXT STEP

CHALLENGE EXISTING SIMULATIONS AT THE CSA VERIFICATION PROCEDURES NEXT STEP
Docking Simulator Architecture

Verifications made
- General functionalities (parameters, etc.)
- Validation of the satellites' relative behavior (initial vs operational)
- Output value vs input (verification of the force behavior of satellites)

Data preparation for the STVF
Transform the new trajectory to be used in the STVF model
Tests Performed (cont.)

- Pure simulation
 (Direct central impact with the peg probe)

Use of a simplified contact dynamics for point-to-plane collision

Target mass = 90 000 kg
Chaser mass = 90 000 kg
+ 900 kg (EE)
Natural freq. = 1.0 Hz
Damp. ratio = 1
Approach vel. = 2.1 mm/s

CCToMM Symposium 2005 – May 26, 2005
Tests Performed (cont.)

- Verification of momentum conservation

\[M_{\text{target}} V_{\text{target}} + M_{\text{chaser}} V_{\text{chaser}} = M_{\text{target}}' V_{\text{target}}' + M_{\text{chaser}} V_{\text{chaser}}' \]

- Target mass = 250 kg
- Chaser mass = 256 kg

Unused data
Tests Performed (cont.)

- Verification of energetic conservation

\[E = \frac{1}{2} m v^2 \]

\[E_{\text{final}} > E_{\text{initial}} \]

Mass too small?

Target mass = 250 kg
Chaser mass = 256 kg
Next step

• Try of other inertial parameters
• Find a good filter for the force

Goal: Use MDR End-Effect for the capture of the probe
Questions