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ABSTRACT
Proliferative diabetic retinopathy is an important public hea-
lth issue with deteriorating impact on the vision of its patient.
In this study, a novel approach is proposed for the charac-
terization of abnormal vessels based on a spatial point pattern
method. Points of interest corresponding to vascular junctions
are detected by a perceptual organization technique, and then
second-order statistical measures are computed. Significant
differences (p<0.05) between healthy retinal regions and ar-
eas with neovascularizations were obtained, which suggests
that the second-order statistics could be used as a relevant
feature to discriminate the abnormal from the normal vascu-
lature. The relevance of the new measures was also evaluated
with respect to an existing set of features using classification.
The inclusion of a new second-order measure increases the
characterization sensitivity against the already existing fea-
tures from 75.76% to 84.85%.

Index Terms— Diabetic retinopathy, fundus imaging,
neovascularization, spatial point pattern analysis, perceptual
organization

1. INTRODUCTION

A considerable proportion of preventable blindness in the
western world is attributed to complications in vision caused
by diabetic retinopathy (DR) [1]. The changes that occur un-
der DR can lead to the proliferation of new vessels, also called
neovascularizations (NVs), which are triggered in response
to the ischemic retina tissue [2]. NVs signify the proliferative
DR (PDR), which is a severe case of DR and different from
the non-proliferative stage (NPDR) stage. Even though the
prevalence of PDR is only 0.4 percent of the total screening
population [3], the appearance of NVs is an emergency where
immediate treatment should be administered. Telemedicine
as part of national screening programs is becoming more
prevalent, increasing the number of available data. In this
scenario, computerized assisted detection of NVs can be
beneficial for timely diagnosis of the proliferative diabetic
retinopathy.

Thanks to the Natural Science and Engineering Research Council of
Canada (NSERC) for funding.

Some efforts have been placed towards automatic charac-
terization of the NVs within the optic disc only (NVDs) [4,
5]. NVDs are well contrasted against the background, ow-
ing to the fact that the optic disc is the brightest retinal struc-
ture. However, the appearance of NVs, regardless of their
site, constitute the transition to the proliferative stage, and it
is thus important for the algorithms to be able to detect new
vessels in all the available retinal sites. Recent studies include
the detection of NVs elsewhere (NVEs) [6, 7, 8, 9]. Most of
the previous work is based on extracting features for classi-
fication of the retinal images in healthy against PDR cases.
These include gray-scale or binary measurements on individ-
ual vessels’ appearance, morphology, geometry [4], texture
[5, 6] as well as fractal analysis [8]. Another work is based
on counting the number of vascular junctions from the skele-
tonized segmentation of the multi-scale line detector (MSLD)
[10]. This measure demonstrates good discrimination power
compared to a set of features selected on the gray-level and
the morphology of the vessels [9].

However, the straight line pattern used in MSLD is inad-
equate for vessel and junction segmentation at the small ves-
sels or the neovascularizations. A. Christodoulidis et al. [11]
combined the line detector with the tensor voting framework
(TVF) [12] in a multi-scale way to overcome the small vessel
segmentation problem. Still, the junction detection problem
is not trivial. One advantage of using TVF for junction de-
tection, is that it can infer the information based on the per-
ceptual organization of the neighbor structures. Therefore, it
can locate the junctions even if the MSLD method fails to
extract any meaningful information. In this paper we choose
this method to isolate the vascular junctions from already seg-
mented vessels. To the best of our knowledge, this is the first
time where TVF is used to isolate the retinal vascular junc-
tions that are in turn used as points of interest.

Furthermore, the existing work is limited to first-order
statistics to distinguish between healthy and abnormal ves-
sels, such as counting the total number of junction, and their
density in an image, or in a region. However, their relative
spatial arrangement is not taken into account. Neovascular-
izations are highly inter-connected vessels. Hence, their junc-
tions are closer than healthy cases. The utilization of second-
order measures coming from the spatial point pattern analysis



field [13] can give more discriminating information about the
spatial organization of the vascular junctions. Thus, in ad-
dition to junction detection we exploit second-order statistics
computed on the junction spatial distribution for characteriz-
ing the vessels as healthy or abnormal. Finally, we examine
the relevance of the new measures as part of a classification
scheme where several features are extracted from healthy and
NVs regions, NVEs and NVDs, coming from PDR images.

2. METHODS

2.1. Junction Center Detection

Vessel Extraction: We apply the MSLD [10] on the green
channel of the retinal images whose illumination is corrected
and background noise is filtered, as in [11]. We apply the
line detector, adjusting the line length parameter W accord-
ing to the image resolution. The overall distribution of line
response values varies according to the considered image and
database, so we determine the simple threshold value adap-
tively by fitting a Gaussian function on the distribution of
the MSLD response values of each image. We use the same
threshold value T = bµGaussianc+ bσGaussianc for all the avail-
able images, where µGaussian is the mean value and σGaussian is
the standard deviation of the fitted function, respectively.

Postprocessing: Simple thresholding the line response
leads to the retention of disconnected background structures
that are either small in size or irregular in shape. In order
to remove this type of noise we perform a conservative mor-
phological analysis. We suppress all the disconnected com-
ponents that have 400 < AreaCC < 1000 and that are not
elongated enough (ElongationCC < 0.99), where elongation
is defined according to [14]. Smaller components are com-
pletely removed, while larger components are kept regardless
of their shape. The values of these parameters are chosen em-
pirically aiming for background noise suppression, and at the
same time retention of NV regions that are identified as PDR.

Tensor Voting: We detect the junctions by decomposing
the second order tensor T into its eigenvalues (λ1, λ2), and
measuring the ballness measure (λ2) there:

T=λ1ê1êT1 + λ2ê2êT2 =(λ1 − λ2)ê1êT1 + λ2(ê1êT1 + ê2êT2 ),

where ê1,2 are orthogonal eigenvectors that hold the direc-
tion of the inferred lines at each pixel location. Furthermore,
scale parameter σTVF defines the extend of the voting field and
subsequently controls the distance in which the neighbor in-
formation is taken into account. The ballness measure of the
tensor quantifies the local orientation uncertainty of the seg-
mented vessels and it exhibits local maximum there. Since we
are interested in extracting information from cluttered vessels
low scale value should be used (σTVF = 20).

Junction Centers Isolation: We first identify the re-
gional maxima by applying the height-domes [15] algorithm.
We then isolate the maximum values inside these domes. We

morphologically reconstruct the original image I from I−h1,
and then we subtract the result from the input image. This
way, whole regions, unlike single pixels that demonstrate
local maxima, can be identified. Additionally, we select the
most prominent domes, namely the regions that have height
over h2. The values for the parameters are empirically set
to h1 = 2600 and h2 = 1400 and depend on the value of
the scale σTVF. Finally, we merge closely identified junctions
that belong to the same region by finding the barycenter in an
11x11 window. Figure 1 shows an example of the previous
algorithmic steps in an image with NVDs.

2.2. Spatial Distribution Measures

We compute the following spatial statistics. Two versions of
the dispersion index defined as: i) the variance over the mean
number of junctions (VMR) across the healthy and the PDR
group of images, and ii) the mean distance from the center
of mass of junctions (VMR (µd)). Additionally, we compute
two versions of the Kth-Nearest Neighbor index. The first
is the index described in [16], that in turn is based on the
aggregation index R proposed by P.J. Clark [17], and defined
as:

Kth-NN (K) =
D(observed) (K)

D(random) (K)
=

∑K
i=1 µ(di)

N
K(2K)!

(2K !)2
√
ρ

,

where µ (di) is the mean nearest Kth-order neighbor distance
between all the junctions, N is the number of points, and ρ
is the density. The second version of the measure is just the
numerator of the index, without the comparison against the
random distribution which is also a second-order statistic that
can quantify the spatial arrangement.

The first measure can quantify if the arrangement of
points, or the area pattern, is more clustered or ordered than
if it have been randomly arranged in the same region. The
second measure summarizes, in pixels, the inter-junction dis-
tances. Both measures are straightforward to compute, and in
contrast with the first-order measures they take into account
distances. By applying these measures we can study the rel-
ative aggregation of the patterns in the two considered cases,
the healthy and the PDR. Therefore, we can investigate if the
assumption that the vessel junctions are denser in PDR holds.
Finally, it allow us to study the spatial interactions between
the junctions that give rise to the formation of the specific
pattern in each case.

2.3. Classification Protocol

We assess the benefit of ”incorporating” the newly proposed
measures for classifying regions to PDR. For that reason, we
extract 21 features from each region, that were first proposed
in the literature [4, 9]. Furthermore, we include the following
that were also proposed in [8]: local entropy, measurements
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Fig. 1. Algorithmic steps for the junction center isolation. (a) PDR region, (b) vessel extraction after MSLD, (c) postprocessed
result, (d) tensor voting ballness measure, and (e) final detected junction centers.

on the gray-level co-occurrence matrix (GLCM), and the pro-
posed spatial distribution measures up to the 20th order for
the Kth-NN case. Additionally, we compute the mean, me-
dian, minimum, maximum values of the new measures, as
well as the slope of a linear function fitted on the proposed
measures in Section 2.2. In total, 88 features thus are consid-
ered. We use a wrapper method for forward feature selection
using a support vector machine (SVM) with an RBF kernel,
as in [4, 9]. We dedicate 2/3 of the whole set for training and
validation, and the rest for testing.

3. RESULTS

We perform our analysis in images collected from 5 databases,
where image-level labeling is provided for the majority of the
data (Diaretdb [18], HRF [19], Messidor [20], Kaggle [21],
and a private one). In order to compare the healthy and the
abnormal junctions we confine our analysis at a region-level.

3.1. Anatomically Corresponding Regions

We apply the spatial point pattern analysis in anatomically
corresponding circular regions. Generally, two regions from
different images are corresponding if they are in approxi-
mately similar locations in the available field of view (FOV).
A trained member isolated 114 regions with NVs from the 5
databases, each region originating from a single image. Then
we transform the NV center into polar coordinates (R,φ).
WithR being the distance, in optic disc (OD) radius, between
the OD center and the NV center, while φ is the angle. In the
healthy images we select the regions that are at R distance
and φ angle with respect to the OD, manually adjusting if the
center is found outside of the FOV. Thus, each NV region is
compared to a set of healthy regions. The area of the selected
regions was set to one fifth of the total FOV area of each
image. The healthy group of images contained 99 images.
Overall, 5688 regions from the healthy group are compared
with 114 abnormal regions. We perform the spatial analysis
using the measures described in Section 2.3. Figure 2 shows
an isolated region with NVDs along with the corresponding
regions from the healthy cases. For each region we provide
the segmented vessels with superimposed the junctions.

3.2. Result on First-order Measure

The boxplot in Figure 3(a) shows the results on the number
of junctions for the two cases. Generally, there is an overlap
between the healthy and the diabetic groups. Even though
we have a denser pattern in the PDR cases, just counting the
number of junctions is not enough to highlight any differences
between the healthy and the PDR group.

3.3. Dispersion Indices

The value for the dispersion is different for the two groups
for both measures (Table 1). Both the healthy and the PDR
regions are over-dispersed with respect to the mean number
of junctions. According to this measure, there are many in-
stances where the count of junctions is higher or lower than
the mean value of the corresponding group. Furthermore, the
junctions are approximately 3 pixels closer to the center of
mass of junctions, an artificial reference point, when a PDR
case is encountered. These measure are not sensitive to the
spatial arrangement of junctions in each region so they are
invariant to changes in the underlying pattern, namely they
cannot distinguish between a dense or a scattered pattern.

Table 1. Dispersion Indices Across the Different Cases
Category VMR VMR (µd)

Healthy 8.95 11.13
PDR 7.14 8.26

3.4. Kth-Order Nearest Neighbor Indices

The two measures based on Kth-NN (K) take into account
the inter-junction distances. The Kth-order index includes
the K = 1 case which only examines the nearest neigh-
bor. Higher order nearest neighbors better highlight the differ-
ences between the two considered groups. The graphs in Fig-
ures 3(b) and 3(c) show the results. For the first case, values
under one show that the arrangement of points, or the area pat-
tern, is more clustered than the random distribution. In PDR,
we have a generally more clustered pattern than the healthy
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Fig. 2. Isolated, segmented areas, and junctions for analysis in HRF database. (a-b) Isolated PDR region, (c-h) anatomically
corresponding healthy areas together with superimposed their isolated junctions (red stars).
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Fig. 3. (a) Boxplot of junction counts. (b) Kth-order index measurements over the expected random distribution of the junctions.
(c) Kth-order distance of the junctions for each group.

regions (20th-order Mann-Whitney U-test: p<0.05). Further-
more, we show that the mean inter-junction distance, when it
is not compared against the random distribution, is consider-
able lower for the diabetic than the healthy group (20th-order
Mann-Whitney U-test: p<0.05).

3.5. Classification

We apply a 10-fold feature selection process on two different
feature sets: (a) including 39 features proposed in the litera-
ture, and (b) including 88 features, with 49 newly proposed.
In both cases the following features are selected: mean ves-
sel wall gradient (Wall (µ∇)), number of junctions obtained
by skeletonizing the segmented vessels (Skel (J)), mean gray
level (Seg (µI)), mean local gray level (µI), and local en-
tropy (E). Additionally, in the (a) case the number of ves-
sel orientations (DirN ) is included, while in the (b) case the
Kth-NN (2) without the random comparison is added. Re-
placing the number of vessel orientations with the proposed
second-order feature improves the classification sensitivity by
approximately 9%, and slightly the accuracy (Table 2).

Table 2. Classification Performance per Feature Set Case
Selected Features Sensitivity Specificity Accuracy Precision

(a) feature set 75.76% 99.94% 99.48% 96.15%
(b) feature set 84.85% 99.94% 99.66% 96.55%

4. CONCLUSION AND DISCUSSION

In this paper we proposed a new method for the characteri-
zation of the retinal blood vessels. This is important in the
direction of assisting the physician in the effective detection
of this category of vessels. For the first time, TVF is applied
for the vessel characterization problem as well as the distri-
bution analysis of junctions with measures that originate from
the spatial point pattern analysis theory. We observe signifi-
cant differences between healthy and regions with PDR when
we apply our analysis. Finally, including the Kth-NN (K) dis-
tance measure improves the classification performance.

Accurate a priori information about the vessel location is
crucial for the junction detection step. TVF infers the infor-
mation from the neighborhood so it can partially compensate
for missed segmentation at junctions which is not the case for
junction detection from the skeleton. In parallel, the postpro-
cessing and the center isolation step ensure the suppression
of irrelevant junctions. However, their parameter values are
empirically set. Future work will focus towards the applica-
tion of the proposed methodology for accomplishing the de-
tection task. This could be achieved by training the features
on non-proliferative diabetic retinopathy cases and then test-
ing on whole images. Moreover, higher order tensors could
be used to resolve the orientation uncertainty problem, and
thus distinguish junctions from crossings. This could allow
to further study the differences in the distribution of different
kinds of vessel junctions under healthy or abnormal cases.
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