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1. Conditional Intensities

Our shape process model is fully described by its density
function given by the paper’s Eq.(4). However, in both the
parameter fitting procedure and the model sampling algo-
rithm, this intensity f only appears through its associated
(Papangelou) conditional intensity λ defined by

λ((u,s);x)=


f (x)

f (x\(u,s)) if (u,s) is one of the elements of x,
f (x∪(u,s))

f (x) otherwise.
(A)

Evaluating this conditional intensity λ efficiently is thus
a critical requirement. One should stress that the ratios
f (x\(u,s))

f (x) and f (x∪(u,s))
f (x) are of course not computed directly

but after simplification of the many common terms that are
on both sides of the fractions. More explicitly, if (u,s) /∈ x

λ((u,s);x) = β∏
ei

 ∏
[δi,k ,δi,k+1)

γ
ni,k(u,s)
i,k

 , (B)

where ni,k(u,s) is the number of elements xn ∈ x such
that the pair ((u,s),xn) is ei-oriented and has its distance
dshp ((u,s),xm) lying in the interval [δi,k,δi,k+1). In partic-
ular, all elements xn ∈ x such that dshp (xn,xm) > maxi δi,K
do not intervene.

Numerically, these ratios are computed by scanning suc-
cessively each element lying in the spatial neighborhood of
(u,s), computing its orientation and distance to (u,s), and
multiplying by the corresponding γi,k. Hence, evaluating the
conditional intensity λ((u,s);x) is only linearly proportional
to the number of elements surrounding the element (u,s).

2. Log-Pseudolikelihood Maximization

The parameter fitting algorithm we use tends to find the
parameters that maximize the log-pseudolikelihood of the
model evaluated on the input discrete texture z. Follow-
ing [BT00], it consists in two main steps: (i) Approxi-
mate the log-pseudolikelihood with a quadrature method,

(ii) Maximize this approximate log-pseudolikelihood using
a Poisson regression.

The log-pseudolikelihood in the paper’s Equation (5) can
be rewritten as

logPL =∑
(un,sn)∈z

logλ((un,sn);z)−
∫∫
P×S

λ((u,s);z)duds

where conditional intensity λ((u,s);z) is given by Eq. (A).
Using Eq. (B), the discrete sum in the above equation can
be computed explicitly. Dealing with the double integral is
however more involving. First, note that in our context the
set of possible shapes S is discrete, and each shape in the ex-
emplar is considered to be equiprobable. Hence the ds mea-
sure is the uniform distribution on S, that is Pr(s = sn) =
1/N where N is the total number of elements in the exem-
plar z. Integrating over the continuous domain P necessarily
involves a quadrature method. As proposed by [BT00], this
quadrature method is obtained using a discrete regular cell
grid to which the positions {un} of the elements of z are
added. The resulting set of points is denoted by G = (u j),
and each of these points has a corresponding weight w j that
compensates for the irregularity of the grid. In the end the
double integral is approximated by∫∫

P×S
λ((u,s);z)duds≈ ∑

u j∈G
∑

s∈S
λ((u j,s);z)

w j

N
.

Since all the elements (un,sn) ∈ z correspond to some
couple (u j,s)∈G×S, the resulting approximation of logPL
can be written in the factored form

logPL≈ ∑
u j∈G

∑
s∈S

(y j,s logλ((u j,s);z)−λ((u j,s);z))
w j

N
,

where y j,s =
N
w j
1
(
(u j,s) ∈ z

)
. Maximizing this approxima-

tion corresponds to fit a generalized linear model [Dob02]
whose optimal parameters to be estimated are, when
f is given by the paper’s Equation (4), the vector
(logβ,(logγi,k)).
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Implementation Following classical Poisson regression
solvers, we maximize the above approximation of the log-
pseudolikelihood using Broyden-Fletcher-Goldfarb-Shanno
method. Some parameters γi,k are unobserved in the sense
that no pair of exemplar elements has its relative direction in
the i-th quadrant and their distance within [δi,k,δi,k+1) (this
is inevitably the case of the parameters γi,0 due to the hard-
core condition). As suggested in [BT00], these unobserved
parameters need to be set to zero (their optimal value) and
removed from the regression beforehand in order to keep a
tractable Poisson regression.

3. Metropolis-Hastings Sampling

In this section we present the Metropolis-Hastings sampling
algorithm we implemented to generate all our results. The
algorithm relies only on birth and death proposals and is
known to converge towards our target distribution [GM94].

The algorithm to simulate an output discrete texture x in a
toroidal window W is as follows (below #x and |W | denotes
respectively the number of elements of x and the area or vol-
ume of W ):
• Initialize x as an empty set.
• For iteration t = 1 to t = T , apply equiprobably one of the
following perturbation:
a? Birth:
aa1. Draw uniformly a candidate location u in the output
window.
aa2. Draw uniformly a candidate shape s among the set of
shapes of the input z.
aa3. Compute the acceptance rate Rb = λ((u,s);x) |W |#x+1 for
adding (u,s) to x.
aa4. Add the element (u,s) to x with probability min(Rb,1).
a? Death:
aa1. Select uniformly an element (u,s) ∈ x (if x is empty, do
nothing).
aa2. Compute the acceptance rate Rd = 1

λ((u,s);x)
#x
|W | for re-

moving (u,s) from x.
aa3. Remove (u,s) from x with probability min(Rd ,1).

Note that each birth or death iteration has in average a
constant cost. Indeed it consists mainly in the evaluation of
the conditional intensity λ((u,s);x) which only depends on
the number of elements in the spatial neighborhood of (u,s)
(see Section 1 of the supplemental material). As reported in
the paper’s Table 1, in all our experiments we used either
T = 10,000 or T = 50,000 for the number of iterations.

4. Additional Editing Results

Figure 1 exposes three more editing results: boundary han-
dling with uniform texturing (a), intensity modulation allow-
ing stippling effects (b), and a parameter transfer example
(c). In the latter, the parameters are first fitted on the snakes
input, giving the interaction function displayed at the bot-
tom. We then use this interaction function parameters on a

model sampling that uses the set of ant elements (taken from
the input (e) from the paper comparative figure) instead of
the snakes. Note that this parameter transfer is not equiva-
lent to a simple element interchange, which would lead to an
output with different statistics since the shapes are different.
Here, the output shares the same interaction statistics as the
snakes input.

5. Intermediary Representations and Fitting Results

This section includes figures giving more insight on the com-
putational internals of our discrete texture synthesis:

• Figure 2 reveals the proxy geometries that our method au-
tomatically computes for the exemplars displayed in the
comparative figure of our submitted article;

• Figure 3 displays the directional density functions of the
pairwise element interactions as well as the fitted interac-
tion function for each texture exemplar.

6. Details on [IMIM08] and [MWT11]

For the sake of fair comparison, we further detail in this
section the results we obtained with our implementations
of [IMIM08]’s and [MWT11]’s techniques:

• Figure 4 displays the entire output textures and associated
triangulations synthesized by [IMIM08]’s seeding algo-
rithm;

• Figure 5 exposes the element sampling scheme we used
for describing the element shapes of the exemplar textures
to our implementation of [MWT11]’s method;

• Figure 6 shows the patch-based initialization
of [MWT11]’s Expectation-Maximization procedure, and
the three element reconstruction methods mentioned in
the paper.
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(a) (b) (c)
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1

Figure 1: Complex Texture Editing Based on Our Shape Process. We demonstrate here the versatility of the editing that our
texture modeling provides. Not only is it possible to have our output textures account for possibly complex domain boundaries
during their synthesis (a), but we can also modulate (b) or even transfer (c) the values of the parameters fitted to our exemplars.

Figure 2: 2D Proxy. For each of the examplar from the paper comparative figure, we present here the proxy geometry being
computed and used by our model. These proxy show how a geometric simplification is achieved, yet preserving a rather faithful
and detailed shape geometry.
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Figure 3: 2D Distance Wheels. For each input used in the paper, this figure shows, from left to right wheels, the directional
Probability Density Function of observed pairwise distances (grayscale), the directional Cumulative Density Function (col-
orscale), and the fitted parameter values obtained by likelihood maximization. For the ears of wheat examplar, as mentioned in
the paper, we make use of two element categories: brown vs yellow wheat ears. We therefore show three series of wheels, two
for intra-category interactions (top and bottom), and one serie for the inter-category interactions (middle).
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(a) (b) (c) (e)(d)

Figure 4: Extended Outputs for Ijiri et al.. Since Ijiri et al.’s paper is a growing greedy algorithm, we show here the complete
outputs we generated to fill the rectangular window we used to compare all methods. The input (a) is shown along with its
Delaunay triangulation on which the algorithm rely to build neighborhoods. The dot colors on the triangulation indicate the
element ids. The columns (b) and (c) show both the output triangulations and pinned element arrangements without allowing
elements to rotate, whereas the columns (d) and (e) show the triangulations and arrangements with allowed element rotations.
The dotted rectangular windows represent the best output crops we chose for the comparaison Figure in the paper. In general,
a limited search space strongly impacts synthesis quality, but for each presented result we chose the best outcome between a
rotation-free and a rotation-fixed neighborhood matching.
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Figure 5: Sampled Inputs for Ma et al.. This figure shows the sample sets we used in our pqper comparative figure for each
exemplar element. The sample color indicate the sample ids, showing in which order we did sample the shape borders, basically
following the outer contour.
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(a) (b) (c) (d) (e) (f) (g)

Figure 6: Ma et al. Output Details. This figure gives more details about Ma et al. synthesized outputs used in the paper
comparative figure. Exemplars (a) and their underlying patches (b) are first shown. The element dots color corresponds to
the underlying patch it belongs to. As mentionned by Ma et al., due to their discrete nature, elements often partially straddle
over some surrounding patches, this provokes unwanted interlockings in the output patch initialization (c) and the resulting
element initialization given to the EM algorithm (d). The last three columns show the final outputs (after 20 EM iterations),
reconstructed using the three tradeoffs presented in our submitted paper: An interpolating and approximating thin plate spline
in (e) and (f) respectively; and the best fitted similarity mapping (g). In the paper we chose the latter as giving the mean best
results.
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