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Figure 1: Our framework allows for automatic local color transfer (left) and colorization (right) based on textural properties.

Abstract
This paper targets two related color manipulation problems: Color transfer for modifying an image’s colors and colorization
for adding colors to a grayscale image. Automatic methods for these two applications propose to modify the input image using
a reference that contains the desired colors. Previous approaches usually do not target both applications and suffer from two
main limitations: possible misleading associations between input and reference regions and poor spatial coherence around
image structures. In this paper, we propose a unified framework that uses the textural content of the images to guide the color
transfer and colorization. Our method introduces an edge-aware texture descriptor based on region covariance, allowing for
local color transformations. We show that our approach is able to produce results comparable or better than state-of-the-art
methods in both applications.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Enhancement—Filtering I.4.7 [Com-
puter Graphics]: Feature Measurement—Texture

1. Introduction

In this paper, we propose a method to automatically apply lo-
cal color transfer and colorization between images. Manually col-
orizing a grayscale image, or tuning colors to obtain a desired
ambiance is challenging, tedious and requires advanced skills.
Exemplar-based methods offer an intuitive alternative by automat-
ically changing colors of an input image according to a reference
image (the exemplar) containing the desired colors. The main chal-
lenge of these methods is to accurately match content between the
input and reference image.

The first color transfer algorithms were based on global ap-
proaches reshaping the input image color histogram to match the

histogram of the reference image. While these approaches can be
simple and successful with carefully chosen image pairs, they of-
ten mismatch regions in the input and reference images, and are not
suited for the colorization problem when the input image does not
have a color histogram to begin with.

Alternatively, local approaches (soft-)segment an image into sev-
eral subregions that can be processed independently. Colors are
then added or transferred between similar regions. Those regions
can be either manually provided, or automatically computed based
on image descriptors.

Our approach is automatic and relies on regions defined as ar-
eas of similar textural content. This choice was driven by the fact
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that textures can be found everywhere in nature, and thus in a lot
of photographs. Moreover, perceptual studies showed that the early
stages of human vision are composed of several filters to analyze
textures and color variations in our visual field [YJ∗93,Bal06]. This
suggests that textures are important when observing images and
should be a pertinent basis for local color transformations. Further-
more, textures can be efficiently described by a summary of first
and second order statistics, and present an attractive middle ground
between low-level descriptors (luminance, chromaticity) that can-
not efficiently describe textured regions, and high-level descriptors
(object and region semantic) that are complex, error-prone and slow
to compute.

To apply color transfer between textured regions, our descriptors
are computed on a large scale to be able to characterize large tex-
tures, but they must also preserve image structures. Existing meth-
ods for texture and structure decomposition are not well suited for
our application: edge-aware image descriptors (such as bilateral fil-
tering) have trouble analyzing highly contrasted textures and may
introduce discontinuities in the color transfer. The alternative con-
sists in detecting variations of the descriptors themselves (such as
region covariance), but in that case, image edges are smoothed,
leading to halos in the transfer.

Our solution to estimate texture properties is based on a texture
analysis, followed by an edge-aware processing to compute edge-
aware texture based descriptors. Our main contribution is to com-
pute accurate textural information while preserving image struc-
ture. We use it in a generic framework for local color transfer and
colorization between images based on textural properties.

2. Related Work

In this section, we review previous work on color transfer and col-
orization, before discussing several approaches to extract and ana-
lyze textures for image manipulation.

Color Transfer. An extensive review of color transfer methods
can be found in [FPC∗15]. Color transfer consists in changing the
colors of an input image to match those of a reference image. It
was first introduced in [RAGS01] as a simple histogram reshaping,
where the mean and variance of each channel are transferred sepa-
rately, using the decorrelated Lαβ color space. This rather straight-
forward method can be surprisingly effective with well chosen in-
put images. A rotation component was added in the matching pro-
cess by Xiao and Ma [XM06], allowing the transfer to be done in
a correlated color space (such as RGB). Instead of processing each
channel independently, Pitié et al. [PKD07] proposed to tightly
match the 3-dimensional histograms using iterative 1-dimensional
matchings. While the matching offered by this approach is very
good, it is almost "too good" for the color transfer application as
it tends to produce artifacts by forcing the input to have exactly
the same number of pixels of each color as the reference. Finally,
a more recent approach based on multiscale histogram reshaping
was proposed in [PR11] where the user can control how tightly the
histograms should be matched. Overall, these global methods are
simple, but histogram matchings do not ensure colors to be trans-
ferred between similar regions. When such automatic methods fail,

manual segmentations can be provided to locally transfer between
selected regions [DX09, AP10, LSZ12].

In order to automatically apply a local color transfer, Tai et al.
[TJT05] used mixtures of Gaussians to segment the input images
and transfer colors between regions of similar luminance. A method
to color grade videos based on color transfer between sequences
was proposed in [BSPP13]. Their color transformation segments
the images using the luminance and transfer chrominance between
shadows, mid-tones and highlight regions. In a similar vein, Hris-
tova et al. [HLMCB15] partition the images into Gaussian dis-
tributed clusters considering their main features between light and
colors. Color-based segmentation was also used in [FSDH15] to
extract color palettes and transfer between them using optimal
transportation. While more accurate than global transfers, these ap-
proaches are still only based on first order information to segment
the image and do not take higher order information to match re-
gions between images. Consequently, regions with different textu-
ral properties but similar luminance cannot be distinguished.

Other approaches similar to Image Analogies [HJO∗01] have
been applied to color transfer [SPDF13, OVB∗15]. However they
differ from our approach as they use an additional input to compute
the transformation.

Colorization. Colorization deals with the problem of adding col-
ors to a grayscale image. One of the first approaches to tackle this
issue relies on user input scribbles being extended via optimization
across regions of similar luminance [LLW04]. This optimization is
used with automatically generated scribbles in a lot of example-
based colorization methods [ICOL05, GCR∗12, KCP15]. Because
they rely on a luminance-based optimization in their final step,
these methods tend to have trouble with highly contrasted textures
where the optimization does not propagate colors properly. More
recently, Jin et al. [JCT14] proposed a randomized algorithm to
better match color distributions between user segmented regions.

Closer to our approach, some other methods rely on higher-order
information to transfer the chrominance between pixels containing
similar statistics [WAM02, CHS08, BT12, BTP14]. However, they
often produce halos due to the window used in the statistics compu-
tation. These methods also rely on an energy minimization which
typically makes them slow and hard to use on large images.

Texture Analysis. Many different descriptors have been used to
manipulate images according to their textural content. Previous au-
tomatic colorization methods used SURF, Gabor features, or the
histogram of oriented gradients as base tools for texture analy-
sis [CHS08, GCR∗12, KCP15]. These descriptors are known to be
discriminative, but also computationally and memory intensive due
to their high number of features. Similarly, the shape-based tex-
ture descriptors introduced in [XDG10, XHJF12], although offer-
ing multiple invariants, are too complex for an image manipulation
application where we expect to compute results in a reasonable
time for relatively large images. The recent approaches proposed
in [XYXJ12,CLKL14] precisely separate texture from structure us-
ing a relative total variation, but their descriptors are not accurate
enough to discriminate textures among themselves. Finally, Kara-
can et al. [KEE13] proposed to use region covariance as a texture
descriptor for image smoothing. Our method also relies on a variant
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Input & Reference A. Edge-aware texture descriptors

1. Texture descriptors         2. Gradient descent                 3. Filtering
B. Similarity maps

C1. Local color transfer

             Input                            Reference                            Result

C2. Local colorization

             Input                            Reference                             Result

Figure 2: Pipeline overview. Edge-aware descriptors are first computed to accurately describe the textural content of the input and reference
images (A). They are then used to compute per-pixel distances and allows similar regions to be associated, as shown for the vegetation in (B).
We finally use these distance maps for both color transfer (C1) and colorization (C2), where attributed colors depends on pixel similarities.

of this descriptor, as it is compact and efficient in describing textu-
ral properties. One main drawback is that most of these descriptors
tend to be unreliable around image edges and texture transitions,
especially when estimated on large neighborhoods. For that reason,
we also briefly describe edge-aware filtering methods that could be
used to solve this issue.

Edge-aware filters are crucial to preserve image structures when
smoothing, denoising, enhancing details, or extracting textural in-
formation from images. A well known approach regarding that goal
is the bilateral filter [TM98], which efficiently smoothes images
while mostly preserving luminance edges. However, it tends to lo-
cally introduce halos and gradient reversal artifacts which can mod-
ify textural properties. The guided filter [HST13] offers a different
approach by using a linear transform of a guidance image to filter
an image but may also produce halos around edges. The anisotropic
diffusion [PM90] or the unnormalized bilateral filter [APH∗14] are
more appropriate for our descriptors, since they avoid both halos
and gradient reversal when large scale diffusions are needed.

3. Overview

Our approach for automatically editing image colors based on tex-
tural content is summarized in Figure 2. First, descriptors are com-
puted for the input and reference images in three steps (A): covari-
ance matrices of several local image features are computed over
a coarse scale to roughly characterize the textural content of each
region (A.1). A multi-scale gradient descent then locally displaces
descriptors in order to recover texture edges lost during the coarse
scale analysis (A.2). Finally, an edge-aware filter is applied to ob-
tain descriptors that accurately discriminate homogeneous textural
regions while preserving detailed texture transitions (A.3).

Our descriptors allow the computation of similarities between
pixels. As such, they also enable soft segmentations of the input
and reference images, where smooth and sharp structures are pre-
served. This is illustrated in Figure 2 (B), where the vegetation is
automatically isolated in both the input and reference images. Fi-
nally, similarity maps locally control the transfer of colors between
images (C1) or colorize regions according to similar textural con-
tent (C2). The remainder of the paper is organized as follows: De-
scriptors are described in Section 4 and local color manipulation
algorithms are detailed in Section 5. Results and comparisons are
then presented in Section 6 before concluding in Section 7.

4. Edge-aware Texture Descriptors

4.1. Local Texture Descriptors

We want to analyze the textural information surrounding each pixel
in both the input and the reference images. To that end, we chose
to use region covariance [TPM06, KEE13] as it is an efficient and
compact way of describing image regions. Region covariance cap-
tures the underlying texture by computing a small set of second or-
der statistics on specific image features such as the luminance or the
gradient. Let us consider a pixel p, described by a d-dimensional
feature vector z(p). The region covariance is defined as the follow-
ing d×d covariance matrix:

Cr(p) =
1

W ∑
q∈Np

r

(z(q)−µµµr)(z(q)−µµµr)
T wr(p,q),

where Np
r is a square neighborhood centered on p of size (2r +

1)× (2r + 1) and µµµr is a vector containing the mean of each
feature inside this region. Unlike [TPM06], we add a Gaussian
weighting function with standard deviation r/3 that ensures de-
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Figure 3: Texture descriptors. Patches taken from several regions
of the image in Figure 2 (top) and their respective descriptors com-
puted for the central pixel of the window (bottom). Yellow and
blue values correspond to positive and negative values respectively.
Patches from similar regions have similar descriptors.

(a) Input (b) SSS6 (c) SSS21

Figure 4: Descriptors scales. Small scales lead to noisy descrip-
tors (b). Large scales lead to more homogeneous descriptors and
smooth sharp texture transitions. For visualization clarity, only the
first element of SSSr is shown (i.e. the first value of L1

r ) but the rest of
the set presents the same behavior.

scriptors to be smoothly defined from pixel to pixel: wr(p,q) =
exp(−9‖q−p‖2

2r2 ) . Note that this weight function should also be used
to compute the mean features µµµr. W is the normalization factor:
W = ∑q∈NP

r
wr(p,q). We typically use r ∈ [20,30] and rely on a 6-

dimensional feature vector based on luminance derivatives to cap-
ture coarse scale textural content on natural images:

z(p) =

[
L(p) ∂L(p)

∂x
∂L(p)

∂y
∂

2L(p)
∂x2

∂
2L(p)
∂y2

∂
2L(p)
∂x∂y

]T

,

where L(p) denotes the luminance of pixel p. In practice, each fea-
ture is first centered and normalized (i.e. we substract its mean and
divide by its standard deviation) to equally contribute to the anal-
ysis. Note that other features, such as color derivatives, could also
be used for different applications. For our color manipulations, we
found that luminance carried most of the relevant texture informa-
tion, especially in natural images.

As explained in [HCS∗09, KEE13], region covariances only de-
scribe second-order statistics, which can be a limitation when de-
scribing textural content as it cannot separate two distributions
which only vary with their mean. Moreover, computing distances
between covariance matrices is expensive because they do not lie in
a Euclidean space. We thus follow the solution proposed by Kara-
can et al. [KEE13] who use the Cholesky decomposition to trans-
form covariance matrices into vectors that can be easily compared
and enriched with first-order statistics. Our descriptor is then rep-

(a) Descriptor SSS21 (b) Standard descent (c) Multiscale descent

Figure 5: Gradient descent illustration. (a) A zoom in the sky/trees
transition of the image shown in Figure 4. (b) A gradient descent
guided by the variance of the coarse scale descriptor tends to
sharpen edges (top), but may mistakenly assign descriptors to the
wrong side of the edges: The red sky pixel (bottom) is considered as
part of the trees here. (c) A gradient descent gradually performed
at multiple scales (from fine to coarse) better preserves complex
texture transitions. The red pixel is now successfully assigned to
the sky.

resented by:

SSSr =
(
L1

r · · · Ld
r µµµr

)
, (1)

where Li
r is the ith column of the lower triangular matrix Lr ob-

tained with the Cholesky decomposition Cr = LrLT
r at scale r and

µµµr are the first-order mean features in the corresponding region.

Visualizations of our descriptors are shown in Figure 3 where we
can see that their values are similar when computed on the same
types of regions. On the other hand, these values are dissimilar be-
tween different regions, making our descriptor able to discriminate
different textural regions. Figure 4 shows how descriptors are af-
fected by the scale r. Small scales (b) preserve edges but tend to
produce noisy descriptors. Conversely, larger scales successfully
describe uniform regions but fail to accurately preserve sharp tex-
ture transitions that often occur inside images. This is shown in
(c), where the sharp transition between trees and sky is blurred
when computing the descriptor with a large neighborhood. This
phenomenon is due to the fact that on these particular pixels both
tree and sky features are mixed to compute the descriptor, which
then tend to represent this transition as a third texture. However,
this is problematic for our color manipulation applications, where
such descriptors will produce halos around edges. Note that we can-
not integrate luminance edges in the weight function wr (as in the
bilateral filter for instance). Indeed, this would prevent highly con-
trasted textures to be accurately captured since such textures would
be fragmented into multiple pieces. For our purpose, we need both
constraints to be satisfied: homogeneous descriptors inside regions
and sharp texture edges preserved.

4.2. Multiscale Gradient Descent

To prevent texture transitions from being blurred, we propose to
use a multiscale gradient descent algorithm to give these regions
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valid descriptors. Intuitively this multiscale gradient descent lo-
cally propagates relevant descriptor values (occurring inside ho-
mogeneous textural regions) to replace irrelevant ones (occurring
around region borders). In order to do so, we use the variance of
the descriptors to guide a gradient descent as this variance is low on
homogeneous regions and high around texture edges. This gradient
descent will then replace descriptors with high variance by those
contained in uniform regions. Formally, the variance of a pixel p is
computed as follows:

Vr(p) = ‖
1

W ∑
q∈Np

r

(SSSr(q)−νννr)(SSSr(q)−νννr)
T wr(p,q)‖, (2)

where SSSr(p) is the descriptor at pixel p and νννr is the weighted
average of the descriptors over the neighborhood Np

r .

The gradient descent replaces the descriptors on either side of
the variance (e.g. texture edges) by descriptors with lower variance,
consequently sharpening descriptor edges. Figure 6 (top) shows the
pseudo-code of the gradient descent, where the returned map con-
tains the coordinates of the descriptor that should be used for each
pixel. The result is shown in the top row of Figure 5, where ini-
tial descriptors (a) are replaced by descriptors from homogeneous
regions by following the gradient of the variance (b). The result
obviously depends on the scale at which descriptors are computed.
On large scales, complex texture transitions are smoothed out and
consequently, some descriptors might be incorrectly attributed to
different regions. This is illustrated in the bottom row of Figure 5,
where the red pixel located in the sky (a) is mistakenly associated
with the descriptor of a tree (b) after the gradient descent pass. Our
solution to preserve complex texture changes with large scale de-
scriptors is to use a multiscale gradient descent, where the scale of
both descriptor and variance are gradually increased to guide the
gradient descent of the initial (large scale) descriptor.

Figure 6 (bottom) shows the pseudo-code of the proposed multi-
scale gradient descent process. The idea is to iteratively apply gra-
dient descents, from fine to coarse scales, in order to propagate de-
sciptors from homogeneous regions while preserving complex tex-
ture edges. At small scales, the descent accurately preserves edges,
but quickly falls into local minima. Increasing scales slowly select
pixels further and further away from the detailed edges, ensuring
that the descriptors are consistent. In practice, the number of iter-
ations used for a given scale is set to the size of the neighborhood
(small and large scales may respectively lead to small and large
propagations). Note that, even if small scale descriptors are needed
to compute the variance, the resulting new coordinates only mod-
ify the coarse scale descriptor. The result is shown in Figure 5 (c).
The obtained descriptor (top) better preserves complex texture tran-
sitions. The red pixel (bottom) now successfully takes descriptor
values of a homogeneous region inside the sky.

4.3. Unnormalized Bilateral Filtering

Gradient descent ensures the precise capture of textural properties
around each pixel, even near texture edges. Yet, descriptors might
still contain some variations that do not appear in the original im-
age. These might happen around U-shaped texture transitions (as

Multiscale gradient descent

1: Initialize M with pixel coordinates
2: Compute SSSrmax using Equation. (1)
3: for r = 1 to rmax do
4: Compute Vr using Equation. (2)
5: M← Gradient descent(M,Vr,r)
6: end for
7: for all pixels p do
8: SSSrmax(p)←SSSrmax(M(p))
9: end for

Gradient descent

1: Input: coordinate map M, variance map V , number of steps n
2: for all pixels p do
3: for i = 1 to n do
4: M(p)←M(p)+∇V (M(p))
5: end for
6: end for
7: Return M

Figure 6: Multiscale gradient descent algorithm.

Input (a) (b) (c)

Figure 7: Unnormalized bilateral filter. (a) The descriptor ob-
tained from the image after gradient descent. (b) The unnormal-
ized bilateral filter accurately propagates descriptors and follows
luminance edges. (c) Without the multiscale gradient descent, halos
are propagated inside regions and descriptors are altered. In these
examples, we used 2000 iterations with σs = 2 and σl = 0.05.

in the left part of Figure 5 (c)) or when a region cannot be prop-
erly defined by its textural content (such as a fine edge on a uni-
form background). This has to be prevented since any variations
in the descriptors might lead to color changes during transfer or
colorization. In a last step, we thus smooth the descriptor using an
edge-aware filter to perfectly fit to the image structure. To that end,
we adapt the unnormalized bilateral filter [APH∗14], such that it
iteratively smoothes the descriptor according to luminance varia-
tions. This filter is simple, efficient, and introduces very little ha-
los if any. However, any other edge-aware filter could have been
used [TM98, HST13, PM90]. Formally, we use the unnormalized
bilateral filter as follows:

SSSub f (p)=SSS(p)+ ∑
q∈Np

Gσs(q−p)Gσl (L(q)−L(p))(SSS(q)−SSS(p))√
2πσ2

s
,

(3)
where Gσ(x) = exp(−‖x‖

2

2σ2 ) is a standard Gaussian kernel. σs and
σl respectively control the influence of spatial distances and lumi-
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(a) Initial result (b) w/ MGD (c) w/ UBF (d) w/ MGD+UBF

Figure 8: Processing effect on the transfer result. In this example,
initial descriptors are blurry and create strong color halos above
the trees in the transfer result (a). The Multiscale Gradient Descent
(MGD) prevents the apparition of halos but some incorrect edges
remain in U-shaped transitions between the sky and the trees (b).
The Unnormalized Bilateral Filtering (UBF) accurately preserves
the structure but smudges halos instead of suppressing them when
used alone (c). The combination of both MGD and UBF leads to a
cleaner result as shown in (d).

nance variations. In practice, we iteratively apply Equation (3) with
rather small values of σs and σl (typically 2 and 0.05) in order to ac-
curately diffuse descriptors on large neighborhoods. Figure 7 shows
the effect of the filter on a problematic region, where the descrip-
tors do not precisely follow edges around the palm tree (a). The
unnormalized bilateral filter accurately brings back the leaf edges,
as shown in (b). The last image (c) shows the effect of the filter
when applied on the original descriptor (i.e. without gradient de-
scent). In that case, halos are propagated inside regions and create
unreliable descriptors.

4.4. Effect of Each Step on Color Transfer Result

An example showcasing the effect of each of the previous steps on a
color transfer result is given in Figure 8. Initial descriptors (a) tend
to produce strong color halos around texture transitions. The mul-
tiscale gradient descent (b) produces much sharper transitions, but
may also introduce discontinuities around U-shaped regions. When
applied alone, the unnormalized bilateral filtering (c) smudges ha-
los instead of suppressing them. Combining multiscale gradient de-
scent and unnormalized bilateral filtering (d) creates a clean result
where even strong initial halos are efficiently removed.

5. Local Color Manipulation

Now that we have obtained reliable descriptors, we propose to use
them for color manipulations by defining transfer functions that
only rely on similar pixels between the input and reference images.

5.1. Pixel Similarity

We define a similarity measure based on the L2 Euclidean distance
between two descriptors:

Dσd (p,q) = exp

(
−‖SSS(p)−SSS(q)‖2

2σ2
d

)
, (4)

(a) (b) (c) (d)

Figure 9: Similarity maps. (a) Input image luminance. The green,
yellow and red pixels are compared with all pixels using Equa-
tion (4) to obtain the corresponding similarity maps (b), (c) and
(d). The similarity measure allows the three regions to be accu-
rately discriminated. Similarities were computed with σd = 1 in
these examples.

whereSSS(p) andSSS(q) are the descriptors at locations p and q and σd
is the standard deviation that controls how close descriptors should
be to contribute to the similarity measure. Note that other metrics
could have been used as detailed in [HCS∗09, KEE13], but we did
not find any significant differences for our purpose. An example of
similarity measure is shown in Figure 9, where pixels (b), (c) and
(d) are compared with all the other pixels of the input image (a). We
can observe that trees, sky and grass regions are accurately selected
and distinguished in the results.

5.2. Color Transfer

The main idea for transferring colors between images is to rely
on local histogram matchings between input and reference images,
where both sets of color points are defined by their texture simi-
larities. The matching process is based on a translation and scaling
of the distribution in a decorrelated color space, as originally pro-
posed by Reinhard et al. [RAGS01]. Input and reference images are
therefore first transformed into the uncorrelated and perceptually
uniform CIE-Lab color space before being processed. The follow-
ing transfer function is then applied on each channel c ∈ {L,a,b}
separately:

Tσd (p) =
stdre f (p)
stdin(p)

(
cin(p)−µin(p)

)
+µre f (p), (5)

where superscripts “in” and “re f ” denote the input and reference
images. “µ” and “std” are the weighted mean and standard devia-
tions respectively, computed as follows, according to the similari-
ties of the pixel p of the input image:

µimg(p) = 1
W ∑

q
cimg(q)Dσd (p

in,qimg)

stdimg(p) =
√

1
W ∑

q
(cimg(q)−µimg(p))2Dσd (pin,qimg),

where img ∈ {in,re f}, q iterates over img and W is the normal-
ization factor: W = ∑q Dσd (pin,qimg). A color transfer example is
shown in Figure 10 (top) where we can observe the effect of the σd
parameter. When σd is small, colors are transferred only between
highly similar regions, such as the sea or the clouds of the input
and reference images here. Wider and wider regions are considered
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Input/reference σd = 1 σd = 2 σd = 4

Input/reference σd = 0.2 σd = 1 σd = 2

Figure 10: Impact of σd on transfer functions. Top: color trans-
fer example. When increasing σd , more and more pixels are con-
sidered as similar, resulting in a transfer close to a basic global
histogram matching. Bottom: colorization example. As colors are
obtained from the weighted average of similar pixels in the refer-
ence image, increasing σd tends to produce a monochrome result.

when increasing σd , leading to results closer to the global matching
of [RAGS01].

5.3. Colorization

Histogram matching techniques cannot be used directly for coloriz-
ing images that do not contain chrominance channels. In this case,
we assign the mean chrominance of the reference image to each
input pixel, weighted by our similarity measure:

Cσd (p) =
∑q cre f (q)Dσd (pin,qre f )

∑qDσd (pin,qre f )
. (6)

Note that this transfer function is applied on chrominance channels
only, although the luminance could also be modified depending on
the purpose. A colorization example is shown in Figure 10 (bot-
tom). Large values of σd tend to average colors on large regions
and consequently create pale and monochrome results. Therefore
σd should be kept small enough for colorization purpose, in order
to only average colors over regions of highly similar descriptors.

5.4. Implementation & Performances

We fully implemented our color manipulation functions on the
GPU using Cuda. All the results presented in this paper were ob-
tained with a NVIDIA Quadro 6000 graphics card. In practice, we
first precompute the descriptors SSS for both the input and reference
images before applying a transfer or a colorization. However, Equa-
tions (5) and 6 require to iterate over all the pixels of the input im-
age, and compute the similarities with the whole reference for each
of them in order to obtain the weighted mean and standard devia-
tions. A naïve implementation of these equation leads to extensive
computation times.

To achieve reasonable speed, we propose to quantify similarities
using a user-defined distance τ that controls how close two descrip-
tors should be to be considered as equal. Considering a particular

τ = 0, 20min τ = 0.01, 21s τ = 0.1, 6s τ = 0.5, 1s

Figure 11: Optimization impact. Color transfer results for increas-
ing τ values for 512× 512 images. The lower τ, the higher the
speed-up and the probability of quantization artifacts. In this ex-
ample, τ = 0.1 allows for a fast transfer which can be used for
efficient results exploration with minimal visual artifacts.

input pixel p, all the other pixels pi such as Dσd (p,pi)< τ are pro-
cessed using the same similarity function. That way, increasing τ

decreases the total number of iterations needed to obtain the result.
The effect of this optimization can be seen in Figure 11, where im-
portant speed-up is achieved without visual impacts. High values
of τ tend to produce quantization artifacts, but may be used to in-
teractively explore the result space.

To summarize, the user can tune the following parameters to
achieve the desired results:

• rmax controls the size of the window on which descriptors are
computed and thus defines the scale at which textures are esti-
mated. Typically, we found that rmax = 21 works well for natural
images of resolution 512×512.

• σs and σl respectively control the influence of spatial distances
and luminance variations when smoothing the descriptor with
the unnormalized bilateral filter. All the results in the paper were
done with σs = 2 and σl = 0.05. The number of iterations used
for this filter depends on the complexity of texture edges. We
typically used 500 iterations for our results.

• σd controls how strongly the weight between two pixels is influ-
enced by their distances in the descriptors space. In practice, we
respectively used σd = 1 and σd = 0.2 for most color transfer
and colorization results.

• τ controls the quantization step. In our results, we used τ = 0.01
as it provides a good speed-up while keeping a good visual qual-
ity in almost every case.

The timings of our algorithm for the image in Figure 11 using
those parameters are described in the following table:

Algorithm Image Size Desc. Transfer Total
Colorization 512×512 19s 47s 66s
(σd = 0.2) 1024×1024 78s 490s 568s

Color Transfer 512×512 19s 21s 40s
(σd = 1) 1024×1024 78s 132s 210s

where “Desc.” stands for the descriptors computation and
“Transfer” stands for the color transfer or colorization step. Typ-
ically the colorization takes longer because of the lower σd used
which create less similarity between pixels (see Equation (4)), lead-
ing to more computation during the transfer step.

Note that our code was designed to be strongly flexible, while
maintaining decent timings as much as possible. We believe further
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Figure 12: Transfer and colorization results. Different colors are
clearly associated with different regions based on their textural
content.

optimization could still provide significant speed-up. For example a
bilateral grid could be used to compute the filtering step much faster
during the descriptors computation. The transfer step could also be
further optimized by considering subsampled versions of the ref-
erence and input images which would greatly reduce the transfer
time for large images. However this unoptimized code still allows
for computation times similar to other color transfer or colorization
methods relying on image descriptors.

6. Results

Results and comparisons presented in the paper and in the supple-
mental materials were all made with the default parameters given
in the previous section.

6.1. Color Transfer Results

Figure 13 (top) shows the results of our color transfer against
other state-of-the-art methods. The results of [RAGS01] were com-
puted with our own implementation of their method. The results

of [PKD07, PR11] were computed using the available code on the
authors webpage, we used a full match (100%) for [PR11]. The
results of [FSDH15] were provided by the authors. The results
of [HLMCB15] were taken from the authors webpage and drove
our choice of images.

These results show that global approaches [RAGS01, PKD07]
tend to produce saturated colors due to the stretching of the input
color histogram. Furthermore, global histogram matchings match
regions of similar colors and luminance, failing in transferring col-
ors between similar textured regions if they have highly different
luminance or colors. This is showcased in the bottom row where
the orange color of the reference buildings is transferred to the
input sky. The progressive approach of [PR11] also fails to accu-
rately preserve the colors of the reference in their results. Local
approaches based on color information [FSDH15,HLMCB15] lead
to better results, but also fail in matching regions of similar textural
content because they define similar regions by their luminance and
color distributions.

Our approach successfully matches those regions, as shown in
the third row, where the flower field of the reference is matched
to the grass of the input (making it yellow); or in the fourth row
where the buildings of the reference are matched to those of the
input (making them orange). Figure 12 shows two more examples
where the matching between different regions is clearly effective
thanks to our descriptors.

6.2. Colorization Results

Figure 13 (bottom) compares the results of our colorization against
other state-of-the-art methods. The results of [WAM02, CHS08,
GCR∗12] were taken from [GCR∗12]. The results of [BT12,
PAB∗15] were computed using the code provided by the authors,
using the default parameters suggested in their code.

Those results show that the method of [WAM02] based on lumi-
nance matching fails when the input images are too complex: differ-
ent regions with similar luminance get the same colors, such as the
building and clouds in the first example. The method of [CHS08]
uses SURF descriptors and Gabor filters which are strongly dis-
criminative, leading to efficient colorization when the input and ref-
erence images have identical or very similar content. However, they
have to crop image borders and colors often smudge in their results.
The method from [GCR∗12] produces better results by combining
superpixel segmentation and similarly robust descriptors (i.e. image
intensity, standard deviation features, Gabor filters and SURF fea-
tures). While achieving better results than previous methods, they
still fail to distinguish between intricate regions such as the clouds
and the sky in the first and fourth row, or the river and the land in
the fourth row. Finally, the method from [BT12] uses descriptors
based on standard-deviation, discrete Fourier transform and cumu-
lative histograms of image patches. It is very prone to halos due to
the window used in the descriptors computation and was improved
in [PAB∗15] where a new luminance-chrominance model was used
to better propagate colors. While this model is very good to avoid
artifacts, the final colors are not always faithful to the reference
image colors, as seen in the first and third rows.

As seen in the last column, our approach accurately matches cor-
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Figure 13: Comparison with previous methods. Top and bottom respectively compare color transfer and colorization results with previous
state-of-the-art methods. See the text for more details.
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Figure 14: Self colorization. The reference color image was de-
saturated to create the input image. In the difference images, the
brighter a pixel, the higher the color difference between the re-
sult and the reference. The result colors fidelity depends on σd: as
σd → 0, the result approaches the reference.

responding textures and produces colorful results: sky, cloud, veg-
etation, mountain and building colors of the references are success-
fully transferred into the input images. Figure 12 shows two more
results demonstrating a clear separation between regions of the in-
put image and correct color associations from the reference image.

To evaluate the coherency of our descriptors, we also tried to
colorize a desaturated image using the original color image as ref-
erence. These results are shown in Figure 14, where we can ob-
serve that color differences between the reference and the output
images depends on σd : the lower σd , the higher the fidelity. This
is due to the fact that input and reference images have exactly the
same descriptors in that case. In the limit case, when σd → 0, only
one pixel will be taken into account when comparing descriptors
(cf. Equation (6)) and the result will be equal to the reference. The
pixel-wise difference between the result and the reference image
was computed as the sum of the absolute RGB differences. Note
that, when input and reference images differ, σd should be given a
higher value to avoid color artifacts.

6.3. Combining Colorization and Transfer

Since our framework is the same for colorization and color trans-
fer, we can easily apply a combination of both to a grayscale input
by adding chrominance via colorization, while modifying the lumi-
nance by transferring only the luminance from the reference image.
The results of this approach can be seen in Figure 15. They show
that this combination can produce a result closer to the style of the
reference image, while still using only the input luminance. Com-
paring this to the result of the color transfer (which also transfers
luminance), we see that color transfer remains more colorful be-
cause the chrominance information of the input image is also used,
however it requires a color image as input which is more restrictive.

7. Discussion and Future Works

In this paper, we presented a generic framework for both color
transfer and colorization. Our edge-aware descriptor accurately

Figure 15: Combining colorization and luminance transfer. Our
framework allows for an easy combination of colorization and lu-
minance transfer. This combination provides a good style transfer
between the input and reference images. While less colorful than a
color transfer result, this result only requires a grayscale input. In
those results, σd = 0.5.

captures similar textural content in images while being robust to
texture transitions. It allows local color transfer and colorization be-
tween similar regions of an input and reference images. Our method
suffers from two main limitations, as described below.

(1) Considering colorization, the input and reference images should
be similar enough to produce coherent results. If a particular re-
gion in the input image does not have any correspondence in the
reference one, the similarity function (based on a Gaussian dis-
tance) tends to give the same weight to all pixels, resulting in a
monochrome colorization. Note that this is equivalent to increasing
σd for this particular region, as seen in Figure 10 (bottom-right).
This problem also occurs for color transfer but is much less visible
since the mean and variance are only used to modify the histogram.
To prevent this, one possibility would be to automatically detect
mismatched regions and ask the user to disambiguate the transfer
by providing more specific reference images.

(2) The proposed descriptors efficiently capture texture regions and
their transitions, but are not able to detect higher-level semantic
information such as faces, man made objects or background and
foreground. Our descriptors might be altered by such objects, thus
affecting the quality of the transfers. Again, this is most visible
in colorization results, as shown in Figure 16. The yellow color
obtained in the top left part of the image is due to the electric wires
that are associated to the warning sign of the reference. The wheels
of the motorbike contain fine structures associated to the girl’s hat,
resulting in a bluish color. One way to mitigate these issues would
be to rely on more complex, but slower, descriptors combining both
semantic and texture information.
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Figure 16: Failure case. Semantic information such as man-made
objects or faces may locally modify the descriptors and produce in-
coherent colorizations. For example here, the motorbike wheels are
colored in blue because they are detected as a texture resembling
the one of the input girl hat.

Despite these limitations, we believe that our descriptor consti-
tutes a good basis that could contribute to other applications such as
tone mapping, edge-aware image decomposition, and color content
modification of videos. Our method could also easily be extended
to handle scribbles in the descriptors processing step. This would
allow the user to fine tune the descriptors and distance maps and
customize them as he pleases.
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