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Red Lesion Detection Using Dynamic Shape
Features for Diabetic Retinopathy Screening

Lama Seoud*, Thomas Hurtut, Jihed Chelbi, Farida Cheriet, and J. M. Pierre Langlois

Abstract—The development of an automatic telemedicine system
for computer-aided screening and grading of diabetic retinopathy
depends on reliable detection of retinal lesions in fundus images. In
this paper, a novel method for automatic detection of both microa-
neurysms and hemorrhages in color fundus images is described
and validated. Themain contribution is a new set of shape features,
called Dynamic Shape Features, that do not require precise seg-
mentation of the regions to be classified. These features represent
the evolution of the shape during image flooding and allow to dis-
criminate between lesions and vessel segments. The method is val-
idated per-lesion and per-image using six databases, four of which
are publicly available. It proves to be robust with respect to vari-
ability in image resolution, quality and acquisition system. On the
Retinopathy Online Challenge's database, the method achieves a
FROC score of 0.420 which ranks it fourth. On the Messidor data-
base, when detecting images with diabetic retinopathy, the pro-
posedmethod achieves an area under the ROC curve of 0.899, com-
parable to the score of human experts, and it outperforms state-of-
the-art approaches.

Index Terms—Computer aided diagnostic, diabetic retinopathy,
fundus IMAGING, lesion detection, retina, screening.

I. INTRODUCTION

D IABETIC retinopathy (DR) is a complication of diabetes
that can lead to impairment of vision and even blindness.

It is the most common cause of blindness in the working-age
population [1]. One out of three diabetic person presents signs
of DR [2] and one out of ten suffers from its most severe and
vision-threatening forms [3]. DR can be managed using avail-
able treatments, which are effective if diagnosed early. Since
DR is asymptomatic until late in the disease process, regular
eye fundus examination is necessary to monitor any changes in
the retina.
With the increasing prevalence of diabetes and the aging pop-

ulation, it is expected that, in 2025, 333 millions diabetic pa-
tients worldwide will require retinal examination each year [4].
Considering the limited number of ophthalmologists, there is
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an urgent need for automation in the screening process in order
to cover the large diabetic population while reducing the clin-
ical burden on retina specialists. Automation can be achieved
at two levels: first, in detecting cases with DR, and, second, in
grading these cases. Indeed, the identification of the severity
level, through DR grading, allows more appropriate and con-
sistent referral to treatment centers [5].
Our research focuses on the development of an automatic

telemedicine system for computer-aided screening and grading
of DR. Since computer analysis cannot replace the clinician, the
system aims at identifying fundus images with suspected lesions
and at sorting them by severity. Then, the annotated images are
sent to a human expert for review, starting with the suspected
most severe cases. Such an automatic system can help to reduce
the specialist's burden and examination time, with the additional
advantages of objectivity and reproducibility. Moreover, it can
help to rapidly identify the most severe cases and to focus clin-
ical resources on the cases that need more urgent and specific
attention.
A computer-aided screening and grading system relies on

the automatic detection of lesions. Fundus images with DR ex-
hibit red lesions, such as microaneurysms (MA) and hemor-
rhages (HE), and bright lesions, such as exudates and cotton-
wool spots. In this paper, we will focus only on MA and HE
which are among the very first manifestations of DR.
Several methods have been developed for the automatic

detection of red lesions in color fundus images. Most of them
[6]–[15] focus solely on the detection of MAs. Because of
their fairly uniform circular shape and limited size range,
MAs can be detected using morphological operations such as
diameter closing [11] and top-hat transformation using a linear
structuring element at various orientations [6]–[10]. The goal
here is to distinguish MAs from elongated structures. Another
approach is to use a priori shape knowledge and to perform a
convolution with a double ring filter [13] or through template
matching with multiscale Gaussian kernels [12], [14], [15].
Contrary to vascular segments, which are directional, MAs
indeed show a Gaussian-like peak in all directions.
Even though MAs are among the first signs of DR, HEs are

also highly valuable for DR screening and useful for grading.
In fact, retinal HEs are the result of MAs starting to leak into
the retinal layers, indicating a more severe level of DR. Ac-
cording to the most common DR severity scale [5], their pres-
ence and number indicate either a moderate or a severe non-
proliferative DR. HEs come in different types, such as ”dot”,
”blot” and ”flame” [16]. Dot HEs and MAs are difficult to dis-
tinguish from one another on fundus images, thus dot HEs are
usually referred to as MAs. A flame HE corresponds to blood
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Fig. 1. Portions of different fundus images with red lesions. The yellow, green and white arrows point respectively to MAs/dot HEs, blot HEs and flame HEs.

leaking into the nerve fiber layer. Its shape, more elongated, fol-
lows the structure of the nerve fibers. A blot HE corresponds to
blood leaking deeper in the retinal layer. It appears larger than a
dot HE, and its borders are irregular, leading to various shapes.
Fig. 1 shows examples of these lesions types.
Because HEs present a wide variety of shapes, template

matching methods, such as the ones developed for MA detec-
tion, are difficult to adapt to this task. In fact, no single template
can match all the possible sizes and shapes of HEs. A common
methodology adopted in the literature for combined MA and
HE detection consists in identifying all dark-colored structures
in the image, mainly through a thresholding, combined with
adapted preprocessing [16], [17], and then in removing the
vessels from the resulting set of candidates. Vessel detection
is performed using either a multilayer perceptron [16] or mul-
tiscale morphological closing [17]. Unfortunately, the major
limitation to this approach is that most of the false positives at
the vessel segmentation step are actually lesions. After their
removal along with the detected vessels, these lesions are lost
and not retrieved in subsequent processing.
In this paper, we propose a method for the detection of both

MAs and HEs that does not require prior vessel segmentation.
We consider a supervised classification scheme to discriminate
between lesions and other structures like vessel segments
and background noise. After image preprocessing, candidate
regions are identified. Features are then extracted and used to
classify each candidate. This approach is common in the litera-
ture. However, in previous work [7], [10], the candidate regions
are first segmented; then, color and shape features are extracted
and used for classification. Nevertheless, the reliabitily of the
color and shape features depends greatly on the accuracy of the
segmentation step. High accuracy is difficult to obtain in the
case of diffuse HEs, particularly in low resolution images. A
difference of a single pixel can have a significant impact on the
circularity measure, for example, especially for small candidate
lesions.
Our major contribution is a new set of shape features that do

not require precise segmentation of the candidates. We consider
every regional minimum as a candidate. Since the boundaries
of the minima do not necessarily correspond to the edges of
the structures of interest, we propose to extract shape features
through the process of morphological image flooding. The gen-
eral idea behind this approach lies in the physical phenomenon
of blood leaking from (as opposed to blood flowing in) the
vessels. In the case of a lesion, the local minimum represents
the focal point from which the blood is leaking gradually, in a
more or less isotropic manner, depending on whether the lesion
is an MA or an HE. This can be represented as nested layers
of progressively higher intensities: as the intensity threshold

increases, each evolving layer encompasses those found previ-
ously. The difference with a vessel segment is that the layers
evolve more anisotropically in the latter case, following the
vessel's orientation, and, at some intensity threshold, start
merging with other vessel segments. This novel set of features,
called Dynamic Shape Features (DSF), was briefly introduced
in a preliminary study [18].
Moreover, because our goal is to use the proposed lesion de-

tection method in a telemedicine context, the method must deal
well with variability in image resolution and quality, in addi-
tion to the inherent variation in the appearance of the retina. To
evaluate the performance of our proposed method in such con-
ditions, we conducted extensive validation, using six indepen-
dent image databases varying mostly in terms of image reso-
lution and acquisition system. This validation, conducted partly
on publicly available datasets, allows us to directly compare our
method to the state-of-the-art.
The paper is organized as follows. In Section II, we pro-

vide a detailed description of the methodology and of the
DSFs. Section III describes the experimental validation setup.
Section IV reports the results which are then discussed in
Section V.

II. PROPOSED METHOD

The proposed method takes as input a color fundus image
together with the binary mask of its region of interest (ROI).
The ROI is the circular area surrounded by a black background.
It outputs a probability color map for red lesion detection. The
method comprises six steps. First, spatial calibration is applied
to support different image resolutions. Second, the input image
is preprocessed via smoothing and normalization. Third, the
optic disc (OD) is automatically detected, to discard this area
from the lesion detection. Fourth, candidate regions corre-
sponding to potential lesions, are identified in the preprocessed
image, based on their intensity and contrast. Fifth, the DSF
together with color features are extracted for each candidate.
Sixth, candidates are classified according to their probability of
being actual red lesions. Each of these steps is detailed in the
following subsections.

A. Spatial Calibration

To adapt to different image resolutions, we use a spatial
calibration method introduced in [19]. Images are not resized.
Rather, the diameter of the ROI (after removal of the dark
background) is taken as a size invariant. This hypothesis is
reasonable since most of the images for DR screening are
acquired with a field of view (FOV) of 45 . is used to set
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Fig. 2. Image preprocessing steps. (a) Original image ; (b) illumination equalization; (c) adaptive contrast equalization; (d) color normalization. The lower row
shows a detailed area of the image after each step. (a) (b) (c) (d) .

the kernel sizes of the different filters in the proposed method.
Three size parameters are used in our method:
• is the average radius of the OD;
• is the size of the smallest MA;
• is the size of the largest HE.

In the case of eye fundus images obtained with a FOV of 45 ,
we have experimentally set these parameters to ;

and .

B. Image Preprocessing

The illumination of the retina is often nonuniform, leading to
local luminosity and contrast variation. Lesions may be hardly
visible in areas of poor contrast and/or low brightness. More-
over, in a telemedicine context, images are variable in terms
of color and quality. Consequently, preprocessing steps are re-
quired to address these issues. The successive steps are detailed
hereafter and illustrated in Fig. 2.
1) Illumination Equalization: To overcome the vignetting

effect, the illumination equalization method in [20] is used:

(1)

A large mean filter of diameter is applied to each
color component of the original image in order to estimate
its illumination. Then, the resulting color image is subtracted
from the original one to correct for potential shade variations.
Finally, the average intensity of the original channel is added
to keep the same color range as in the original image.
2) Denoising: A small mean filter of diameter is

applied to each color channel of the resulting image in order
to attenuate the noise resulting from the acquisition and com-
pression steps without smoothing the lesions.
3) Adaptive Contrast Equalization: The contrast drift is

approximated using the local standard deviation computed for

each pixel in a neighborhood of diameter , for each color
channel . Areas with low standard deviation indicate
either low contrast or smooth background. To enhance low
contrast areas, we sharpen the details in these specific regions
using (2) for each color channel separately:

(2)

Local image details are thereby added to the denoised image,
weighted by the inverse of the contrast drift. The details are ob-
tained using a high pass filter, derived from a mean filter
of diameter . The previous denoising step prevents undesir-
able noise sharpening.
4) Color Normalization: Color normalization is necessary

in order to obtain images with a standardized color range. We
perform, in each color channel of , histogram stretching and
clipping in the range , where and are the mean and
standard deviation of the color channel in the ROI. The resulting
preprocessed image is shown in Fig. 2(d).

C. Optic Disc Removal

The OD is a significant source of false positives in red lesion
detection [18], [21]; therefore its removal is a necessary step.
Starting from the preprocessed image, we first use an en-

tropy-based approach [22] to estimate the location of the OD's
center. Basically, the OD is located in a high intensity region
where the vessels have maximal directional entropy. A sub-
sequent optimization step then estimates the OD's radius and
refines its position. This consists in convolving a multi-scale
ring-shapedmatched filter to the image in a sub-ROI centered on
the first estimation of the OD's center, of radius equal to a third
of the ROI's radius. The radius and position of the matched filter
that minimizes the convolution are selected as the OD's final ra-
dius and center position.
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D. Candidate Extraction
Since blood vessels and dark lesions have the highest contrast

in the green channel [11], the latter is extracted from the prepro-
cessed image and is denoted . The red and blue channels are
used later to extract color features.
In the green channel, MAs and HEs appear as structures with

local minimal intensity. A brute force approach would be to ex-
tract all the regional minima in [15]. A regional minimum
is a group of connected pixels of constant intensity, such that
all the adjacent pixels have strictly higher intensities [23]. Un-
fortunately, this method is highly sensitive to noise. Depending
on the smoothness of the image, the number of regional minima
can thus be very large.
To overcome this limitation, we adopt the dynamics transfor-

mation [24] which rates regional minima according to their local
contrast. Noisy minima usually have lower contrast than red le-
sions. In a topographic representation of , the dynamic of a
minimum is computed as the difference in intensity between the
given minimum and the brightest points of the paths reaching a
minimum of lower intensity. The main advantage of this defi-
nition is that the resulting contrast measurement is independent
of the size and shape of the regional minimum.
Using this transformation, we can select the minima by

thresholding the resulting contrast image. At this point, we
would like to discard from the set of candidates as many local
minima corresponding to noise as possible. In order to estimate
the noise's intensity, we compute the local standard deviation in
a neighborhood of the size of the papilla and consider the lowest
standard deviation inside the ROI, which would correspond to a
region in the retinal background with minimal signal intensity.
This noise estimation is denoted .
Finally, a selected minimum should have an intensity lower

than the mean intensity in to be considered a candidate re-
gion. This is supported by the fact that we are looking for red
lesions, which are darker than the retinal background.
Contrast and illumination equalization gain importance at this

point. Without these preprocessing steps, global contrast and
intensity thresholding would be difficult to achieve.
In addition, all candidates whose distance to the OD's center

is smaller than the OD's radius are removed from the set of can-
didates and not considered any further.

E. Dynamic Shape Features
Among the candidates, several regions correspond to non-le-

sions, such as vessel segments and remaining noise in the retinal
background. To discriminate between these false positives and
true lesions, an original set of features, the DSFs, mainly based
on shape information, is proposed.
In a topographic representation of , each candidate

corresponds (by analogy) to a water source, denoted .
Morphological flooding is applied to starting from the
lowest water source and ending when the retinal background
is reached. It is indeed hypothesized that when the flooding
reaches the retinal background intensity, the catchment basins
degenerate and no longer contextually represent a red lesion.
The last flooding level, denoted , is set experimentally as
described in Section III-C.

At each flooding level , pixels that are adjacent to a water
source and lower than the flooding level are added to the
catchment basin of , denoted . When two basins merge,
they start sharing the same pixels and thus the same attributes.
We implement the image flooding using hierarchical queues
[25].
At each flooding level , for each candidate , six shape

attributes are computed on the catchment basin :
• Relative area : number of pixels in , divided
by the total number of pixels in the ROI.

• Elongation : with and the width and
length, respectively, of the bounding box of oriented
along its major axis.

• Eccentricity : with and the
width and length, respectively, of the bounding box of
oriented along its major axis.

• Circularity : ratio of the area of over its squared
perimeter and multiplied by .

• Rectangularity : ratio of the area of over the
area of its bounding box oriented along its major axis.

• Solidity : ratio of the area of over the area of its
convex hull.

Six curves are obtained for each candidate, one per shape
attribute: , , , ,
and as a function of the flooding level . A linear
least-squares regression is performed on each curve. The order

of the polynomial linear fit is set experimentally as described
in Section III-C. Depending on the order of the fit, the number
of regression parameters is equal to . These parameters
and the root mean squared error of the fit constitute the first

features. The last 2 features are the mean and median
values over the flooding levels. In total, DSFs are
computed for each candidate.
Fig. 3 illustrates the DSF computed for 4 candidates to
, taken from an image with signs of DR (Fig. 3(a)). Candi-

dates and correspond to vessel segments, being on a
relatively large segment while is part of a third order segment
close to the fovea. Candidate corresponds to a medium HE,
and candidate to a MA. Fig. 3(b) illustrates the catchment
basins at each flooding level, starting from the candidate re-
gion and rising progressively toward the image's mean intensity,
equal to 110 in this example. Each evolving layer encompasses
the previous ones. At each level, the shape features, for example

and , are computed on the catchment basins
and reported on the graph of Fig. 3(c) together with their
order linear fit. The elongation function reveals that
candidates and evolve in a more elongated manner than
candidates and , with larger values for their linear fit in-
tercepts. Indeed, the catchment basins of these vessel segments
extend anisotropically, following the direction of the vessel. By
contrast, the circularity functions reveal that candidates

and evolve toward a more circular shape, with positive
slopes, particularly for candidate which corresponds to a
MA. Finally, the solidity function reveals that at inten-
sity level 40 for candidate , the catchment basin appears to
merge with the rest of the vasculature and drops in solidity with
a negative slope. The same goes for candidate but at a higher
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Fig. 3. DSFs illustrated on 4 candidates extracted from the image in (a). Candidates and correspond to vessel segments, being on a relatively large
segment while is part of a third order segment close to the fovea. Candidate corresponds to a medium-sized HE, and candidate to a MA. (b) shows
the consecutive catchment basins from to according to the colormap given on the right. At each level and for each candidate, the circularity,
elongation and solidity are computed and traced in graphs as functions of . For ease of visualization, the shape features are reported at every 10 intensity levels.
(c) shows the resulting curves and for each candidate and their linear fits (dashed lines).

intensity level (100) since it is part of a much smaller and con-
trasted vessel than . The solidities of candidates and ,
however, either increase (positive slope) for the HE, or stay con-
stant and high (slope close to zero and intercept of almost 100)
for the MA, indicating that these structures are isolated from the
other catchment basins.
Four more features, computed on the local minima, are added

to the features vector: the mean red, green and blue values in
and the local contrast [24] in .

F. Classification

To distinguish between lesions and non-lesions, we use a
Random Forest (RF) classifier [26]. This powerful approach has
been widely used in computer vision over the last few years,
due to its numerous advantages. It is convenient for non-linear
classification with high-dimensional and noisy data. It is robust
against outliers and over-fitting. Moreover, it incorporates an
implicit features selection step.
A RF is a combination of decision trees trained indepen-

dently using bootstrap samples drawn with replacement from
the training set. Each node is split using the best of a randomly
selected subset of features chosen, according to the decrease
in the Gini index [26]. The RF returns, for each candidate, a
probability of being a lesion , equal to the proportion of
trees returning a positive response.
We used the MATLAB interface [27] to the RF implemen-

tation in [28]. The classifier relies on two user-defined param-
eters, and , but usually the outcome is not very sensitive

to their values [28]. We thus follow the recommendations pro-
vided in [26] and set trees and , where

is the total number of features.

III. EXPERIMENTAL SETUP
To evaluate the performance of our method on a large variety

of images, we used six independent databases, the main charac-
teristics of which are summarized in Table I. This allowed us to
evaluate our method with regard to differences in image resolu-
tion, FOV, image compression and acquisition system.
Our method was evaluated at two levels. When a delineation

of the lesions was provided, our method was evaluated on a
per-lesion basis, meaning we analyzed its performance in de-
tecting every single lesion. For DR grading, the per-lesion per-
formance must be as high as possible, because the number of
lesions as well as their location and type are crucial to assess
DR severity level. When only a diagnosis was provided for each
image, our method was evaluated on a per-image basis. This
latter evaluation is more interesting from a screening point of
view since it evaluates the method's performance in discrimi-
nating images with/without signs of DR.

A. Per-Lesion Evaluation
To evaluate the detection of red lesions, we performed a

free-response receiver operating characteristic (FROC) anal-
ysis. This consists in computing the per-lesion sensitivity
and the average number of false positives per image (FPI),
for different thresholds on the output probabilities . To
provide a global detection score, we computed the FROC score
as proposed by Niemeijer et al. [29]. It is obtained by averaging
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TABLE I
DATABASES USED FOR EVALUATION

the sensitivities taken at 7 particular points along the FROC
curve. These points correspond to 1/8, 1/4, 1/2, 1, 2, 4 and
8 false positives per image. This evaluation requires a prior
manual segmentation of the lesions, to serve as a reference.
Thus, we use the following three independent databases:
1) Retinopathy Online Challenge (ROCh) Database [29]:

This public database comprises 50 images for training and 50
images for testing. Only the annotations of the training set
are publicly provided. The evaluation on the testing dataset is
performed through the challenge's website which provides a
FROC curve and the corresponding score. It is important to
note that only MAs are annotated in this database. Nevertheless,
we found it important to evaluate our method on this database,
because it has been widely used in the literature, and allows
us to compare our method to existing ones [33]. The RF built
using the ROCh training images is denoted .
2) Diaretdb1Database [30]: This public database comprises

28 training images and 61 testing images. As opposed to ROCh,
it providesmanual segmentations of bothMAs andHEs. The RF
built using the training images is denoted .
3) CARA143 Database: This private database consists of

143 images collected through the telemedicine platform of Di-
agnos Inc. (Brossard, QC, Canada). Depending on the client,
images are acquired using different retinal cameras (various
models of DRS, Zeiss, Topcon and Canon devices) with dif-
ferent resolutions ( between 1400 and 3240 pixels). The im-
ages are JPEG compressed at an estimated ratio of 12:1. All
the images were analyzed by two human experts. Expert 1 seg-
mented the images twice with an interval of one month between
trials in order to assess the intra-expert variability. Expert 1's
first segmentation was considered as the reference for valida-
tion. A total of 1384 red lesions were annotated, 1071 of which
wereMAs, 275were blot HEs and 38were flameHEs. Using the
DR classification provided in Table II, 87 images are classified
as R0, 16 as R1, 22 as R2 and 18 as R3. Including 87 images free
of DR in the dataset ensured that the prevalence of images with
red lesions was similar to the diabetic screening population. The
RF built using all 143 images is denoted . We evaluate
our method on this database using 10-fold cross-validation to
avoid any dependence on the partitioning of the dataset.

B. Per-Image Evaluation
It takes at least one lesion in an image for the retina to be

considered as having signs of DR, while the absence of lesions
indicates a healthy retina. Since the output of our red lesion de-
tection method is a set of candidates with a probability associ-
ated to each one, we pose that the probability of image

TABLE II
RETINOPATHY GRADING IN MESSIDOR DATABASE

of having signs of DR is given by the highest probability among
its red lesion candidates:

(3)

If , being the threshold above which a candidate
region is considered a lesion, we can consider that the image
contains lesions, and thus that it reveals signs of DR. For this
validation, we performed a standard receiver operating char-
acteristic (ROC) analysis by varying between 0 and 1. We
computed the area under the ROC curve (AUC) as a global de-
tection score. We used the three databases presented below, for
which a per-image annotation was provided (DR vs. no DR). It
should be noted that because no manual lesion segmentations
were provided with these databases, we could not train our le-
sion classifier on these datasets. Instead, we used our previously
built classifiers, , and , to identify the le-
sions in the new images. Although this might be seen as a dis-
advantage, we believe that by doing so we were able to assess
the performance of our lesion detection under realistic condi-
tions and its robustness in the face of data changes. The same
approach was used for validation using the Messidor database
in other studies [19], [34], [35].
1) Messidor Database [31]: This public database consists of

1200 fundus images. For each image, a DR grade is provided as
well as a risk of macular edema. In this study, we used only the
DR grades, which are based on the number of MAs, HEs and
neovessels (see Table II).
2) Erlangen Database [32]: This public database consists of

15 images of healthy retinas, 15 images with glaucoma and 15
with DR. We merged the healthy and glaucoma images into a
single class (no DR).
3) CARA1006 Database: This private database consists of

1006 images acquired in the context of a large telemedicine
screening project. It is independent of CARA143. All the im-
ages in CARA1006 were analyzed by two human experts for
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Fig. 4. Effect of the DSF parameters on lesion detection in the CARA143 data-
base (evaluated by cross validation).

the presence/absence of any signs of DR. The annotations pro-
vided by the senior ophthalmologist were considered as the ref-
erence for validation. A total of 304 images were labelled with
DR, making the prevalence in the dataset comparable to that of
actual screening situations where approximately 10% of the im-
ages exhibit signs of DR [10].

C. DSF Parameters

In a separate experiment, we evaluated the effects of the two
DSF parameters, i.e., the order of the linear fit and the last
flooding level , on the detection performance. We used

, and
order linear regressions to model the shape

attributes. We also considered two image-specific values for
which estimates the retinal background: and .

We evaluated each pair of parameters by cross validation on
CARA143.

IV. RESULTS

A. DSF Parameters

Fig. 4 illustrates the cross-validation FROC curves obtained
on CARA143 for different pairs of DSF parameters. The corre-
sponding FROC scores are shown in the legend.
Concerning the order of the linear fit, there is no signifi-

cant difference between the results of the three regressions that
would justify considering one model over the others. Conse-
quently, because the first order regression parameters (slope and
intercept) facilitate the interpretation of the model, we consid-
ered in the rest of the study a first order linear regression to com-
pute the DSFs.
Concerning the last flooding level , Fig. 4 shows that, for

a first order linear regression, generates better results
than (FROC score of 0.403 over 0.362). This finding reveals
that is a better estimate of the retinal background
intensity level. Thus, we considered for the
remainder of the study.

B. Per-Lesion Evaluation

The performance of ourmethod on the ROCh test set is shown
in Fig. 5(a), using the three RFs. The best detection accuracy
is achieved with , i.e., when training the RF using im-
ages of the same database. According to the evaluation by the
challenge's organizers, our method achieved an overall score of
0.420 using , which ranks it in place among currently
published results [15]. With and , the scores are
0.245 and 0.344, respectively.
Fig. 5(b) shows the FROC curves obtained by our method

on the Diaretdb1 test set, again using the three RFs for classi-
fication. The overall scores obtained with , and

are 0.146, 0.354 and 0.217 respectively.
The performance on CARA143 is illustrated in Fig. 5(c). The

scores of and are 0.287 and 0.241 respectively
while the cross-validation achieved 0.404.
Fig. 6 shows the performance of the proposed method

in detecting each type of red lesions in CARA143, to-
gether with the intra- and inter- expert varialibity (human
experts 1 and 2 respectively). Blot HEs are the best de-
tected lesions , followed by MAs

. For the detection of flame HEs, the
sensitivity is lower . As shown on this
graph, most of the lesions that are missed by the detection are
close to the vessels ; they are either on
top of or directly linked to visible vessels.
Fig. 7 shows some results of the proposed red lesion detection

method on images from the CARA143 database. These results
were obtained with a probability thresholding of 0.24, which
corresponds to a sensitivity of 0.51 for an average of 3.3 FPI
on the cross-validation's FROC curve. The proposed method is
able to detect both HEs, such as in Figs. 7(a) and 7(c), andMAs,
such as in Fig. 7(b). Most of the missed lesions are directly
connected to large vessels such as the two HEs at the bottom
of Fig. 7(c). False positive detections, occuring mostly in im-
ages without DR, correspond to tiny vessel segments located
in between bright reflections of the nerve fiber layer, such as in
Fig. 7(d), a frequent pattern observed in retinal images of young
adults. Because these local minima are surrounded by very high
intensities, even at the last flooding level, the catchment basins
are very compact and the DSFs do not allow the classification
to discriminate between these vessel segments and real lesions.

C. Per-Image Evaluation

Table III presents the results obtained on Messidor using the
three lesion classifiers, , and , in com-
parison to the results obtained by Sanchez et al. [34] on the
same database. achieves the best performance. The sen-
sitivity, specificity and detection percentages of R1, R2 and R3
are plotted against the probability threshold in Fig. 8(a).
When classifying images without DR against images of all

DR stages, the proposed method obtained an AUC of 0.899 and
a sensitivity of 93.9% at a specificity of 50%. When classifying
non referable images (R0 and R1) against referable images (R2
and R3), our method achieved an AUC of 0.916 and a sensi-
tivity of 96.2% at a specificity of 50%. Fig. 8(a) illustrates the
complete ROC curves for these labelling tasks.
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Fig. 5. FROC curves of the proposed method applied on the test sets of the 3 databases, using , and . (a) ROCh (b)Diaretdb1 (c) CARA143.

Fig. 6. FROC curve per lesion type on CARA143.

On the Erlangen and CARA1006 databases, the best perfor-
mance was also achieved using with an AUC of 0.976.
The ROC curves are plotted in Fig. 8(b). For the high resolution
Erlangen images, at a set point of 0.74, the method obtained a
sensitivity and specificity both of 93.3%. The only image with
DR that was missed corresponds to a mild non proliferative DR
with only two MAs: the first one is at the edge of the ROI and
the second is directly connected to a large vessel. The two false
positive images are glaucoma cases.
On the CARA1006 dataset, the method achieved a sensitivity

of 96.1% for a specificity of 50%. The AUC is equal to 0.941.
Most of the false positive images exhibit bright reflections of
the nerve fiber layer, as in Fig. 7(d). Compared to the reference,
the other human expert achieved a sensitivity of 92.9% and a
specificity of 85.9% (see Fig. 8(b)).

V. DISCUSSION

This extensive validation of the proposed red lesion detection
method demonstrates its high potential to be used as part of an
automatic telemedicine DR screening system.

A. Performance in Detecting Lesions
On a per-lesion level, the method ranks on the ROCh

dataset and thus, has proven to be highly competitive compared
to state-of-the-art approaches. The best published method
on this dataset [33] combines different individual detection
approaches. The second [15] and third place methods are
specific to MA detection as they use prior shape knowledge.
Our method allows the detection of both MAs and HEs.
OnDiaretdb1, which provides reference segmentation of both

MAs and HEs, our method, with the classifier trained on the

same dataset, achieves better detection than the ensemble-based
method in [35]. Unfortunately, Antal et al. [35] did not provide
a FROC score. However, according to their FROC curve, the
sensitivity reaches 0.6 for almost 30 FPI, compared to 6 FPI in
our case.
Nevertheless, it is to be noted that for Diaretdb1, the classifier

trained using the learning set provided by Diaretdb1 achieves
much better results than the other to RF. We can explain this
difference by noting that most of the images in Diaretb1 include
3 to 5 dark spots that resemble red lesions but are always located
in the exact same position in the images. It is likely that these
spots were actually caused by specks of dirt on the lens of the
retinal camera. In the learning set of Diaretdb1, these spots are
not marked as lesions and thus, the classifier, as opposed
to and , ”knows” that these candidates are not
actual lesions. These false positives can be easily discarded by
comparing the right and left fundus images of the same patient
and removing detections located at exactly the same position in
both images. Unfortunately, the database does not provide the
correspondence between images of the left and right eyes so we
are not able to discard these false positives.
Even on the highly heterogeneous CARA143 dataset, the pro-

posed method achieves satisfactory results, proving its robust-
ness with respect to differences in image resolution and retinal
camera. Compared to our previous paper [18] evaluated on the
same CARA143 dataset (FROC score of 0.393), the addition of
the adaptive contrast equalization allows the detection of more
lesions located in poorly contrasted areas that were otherwise
lost at the candidate extraction step. Nevertheless, the proposed
method yields a sensitivity lower than that of human experts for
the same FPI rate.
The results of the 3 RFs on the 3 databases demonstrate that

the best performance is achieved when images of the same
dataset are used for training. In fact, the ROCh training set
has only MAs labeled as lesions, which explains why
is less successful on Diaretdb1 and CARA143. Conversely,

, trained with both MAs and HEs marked as lesions,
performs better than on Diaretdb1 and CARA143
because both types of red lesions are marked as such in the
reference sets. This observation underscores the importance of
properly labelling the samples in the training set.
The results of our experiments indicate that the DSFs com-

binedwith the proposed preprocessing steps are highly discrimi-
nant. The main advantage of these shape features is that no pre-
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Fig. 7. Examples of lesion detection. The top row shows the images. The bottom row shows the detected lesions. The probability threshold is set to 0.24,
corresponding to 51% per-lesion sensitivity and an average of 3.3 FPI. True positives are filled in red or marked by a red square. False positives are circled in
green. Sample false negatives are marked by blue triangles.

TABLE III
ROC RESULTS ON THE MESSIDOR DATABASE

cise prior segmentation of the candidates is needed since fea-
ture computation is performed at different levels throughout the
image flooding. This is supported by the fact that our method
adapts well to changes in image resolution. Its performance on
the low resolution images of ROCh is com-
parable to its performance on the high resolution images of
CARA143 . We believe that DSFs could help in
other detection applications, particularly when the objects to be
detected do not show clear boundaries and are difficult to seg-
ment precisely.
To compute the DSFs, we used a linear regression to model

the shape attribute functions. This model is rather basic and
does not provide higher order information. Still, the root mean
squared error measures the dispersion around the approximated
linear model, and has a large value for functions that are not
linear. Moreover, we demonstrated that there is no significant
effect of the order of the linear regression on the lesion detection
performance. The slope of the first order regressionmodel quan-
tifies the rate at which a catchment basin evolves. This prop-
erty makes the DSF easier to interpret. Regarding the stop crite-
rion for the flooding, we used an image-specific intensity level
equal to which approximates the minimum value of
the retinal background in the presence of noise. The illumina-
tion and contrast normalization are crucial for this phase, since

without these preprocessing steps, a global stop criterion would
be difficult to select.
The proposedmethod proves to be very efficient for the detec-

tion of blot HEs, even more efficient than for MAs. In fact, blot
HEs appear in different shapes and sizes, and no single template
can represent the various geometries of these lesions. Template
matching methods [12], [14], [15] were designed specifically
for MA detection and were evaluated on datasets with only MA
annotations, such as ROCh.
Compared to other state-of-the-art approaches [8], [9], [16],

[17], our method does not rely on vessel segmentation to re-
move false candidates prior to classification. In fact, our novel
features can distinguish candidates corresponding to segments
of large and small vessels from real lesions. However, HEs that
clearly appear to be linked to first or second order vessels are
still missed. These account for most of the false negatives. Also,
the detection of flame HEs, which are more often associated
to hypertensive retinopathythan to DR, appears to be almost as
challenging. Future work will focus more thoroughly on the de-
tection of these HEs as well as neovessels, which are important
features for grading.
The purpose of the per-lesion validation was to evaluate and

compare our method to existing red lesion detection algorithms.
However, from a clinical point of view, we believe that per-
image validation is more appropriate, especially to evaluate our
method for screening applications.

B. Performance in Detecting Images With Signs of DR
On the Messidor database, the proposed method, using

CARA143 as a training set, outperforms existing DR detection
algorithms whether they are based on lesion detection [34],
[35] or on global image features [36], [37]. On subsets of the
database, image classification using AM-FM texture features
[36] achieves an AUC of 0.84 and a content-based image
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Fig. 8. Performance of on Messidor (a), Erlangen and CARA1006 databases (b).

retrieval system using a multiple instance learning framework
[37] achieves an AUC of 0.881. On the complete dataset,
AUCs of 0.875 and 0.876 were reported using respectively an
ensemble-based MA detector [35] and using a combination
[34] of dark and bright lesion detection systems proposed in
[10], [38].
With an AUC of 0.899 on Messidor, the proposed system

achieves a performance comparable to that of the two human
experts in Sanchez's study on the same dataset (
and ) [34], even on the differential DR grading
(R0/R1, R0/R2, R0/R3). Our system shows the lowest perfor-
mance when distinguishing normal images from those with
stage 1 DR (R1). However, even for experts, this appears
to be the most difficult task [34]. In fact, the most common
DR classifications used for clinical diagnosis, such as in [5],
suggest that cases with fewer than 5 MAs and no HEs need not
be referred.
When classifying Messidor images into non-referable (R0

and R1) and referable (R2 and R3) cases, our system achieves
an AUC of 0.916. Previously published results of computer-as-
sisted detection systems for referable DR, using a dataset de-
rived from Messidor, report an AUC of 0.937 [39]. However,
this performance is achieved by using the combination of im-
ages from both eyes. Unfortunately, we could not perform a di-
rect comparison with [39] because we did not have access to
their database (Messidor2).
The results obtained on the Erlangen database indicate that

our method achieves good performance even on images of
very high resolution. To our knowledge, no other DR detection
method has been evaluated on this dataset. However, it is to be
noted that the spatial calibration was adjusted to images of 45
FOV, which is not the case for the Erlangen images (FOV of
60 ).
On our private database of 1006 highly heterogeneous im-

ages, for a specificity equal to that of the human expert (85.9%),
the sensitivity of our method reaches 87.7%, which is compa-
rable to that of the human expert (92.9%). Moreover, at a set
point of 0.41, the sensitivity is 96.2% for a specificity of 60%.
At the same set point on CARA143's FROC curve, the lesion
detection achieves a sensitivity of 38% for an average of 1 FPI.
This implies that even if most of the lesions are not detected, the
detection method performs very well in detecting images with
DR, because it takes only one lesion to be detected for an image
to be considered as showing signs of DR. However, in a grading

scheme, where we want to evaluate DR severity, our lesion de-
tection method might be insufficient in its current implemen-
tation. More experiments should be conducted to evaluate the
ability of the proposed method to grade images with DR.
Even though the aim of this study was the detection of red

lesions, complete DR grading also requires bright lesions such
as exudates and cotton wool spots to be considered. In future
work, the proposed method will be adapted to finding bright
lesions and tested on public databases to evaluate the potential
of the proposed DSFs in different detection problems.

C. Computation Time

The overall computation time depends mostly on image res-
olution. Using an Intel Core i5–2400 CPU at 3.10 GHz, without
parallel computing, the execution time of our software written in
C++ varies between 4 seconds for the smallest ROCh image

to nearly 5 minutes for the largest Erlangen image
. On average, it takes 98 seconds to process an image

with in the range 2000–3000 pixels.

VI. CONCLUSION

A novel red lesion detection method based on a new set of
shape features, the DSFs, was presented and evaluated on six
different databases. The results demonstrate the strong perfor-
mance of the proposed method in detecting both MAs and HEs
in fundus images of different resolution and quality and from
different acquisition systems. The method outperforms many
state-of-the-art approaches at both per-lesion and per-image
levels. DSFs have proven to be robust features, highly capable
of discriminating between lesions and vessel segments. The
concept of DSFs could be exploited in other applications,
particularly when the objects to be detected do not show clear
boundaries and are difficult to segment precisely. Further work
focusing on bright lesion and neovessel detection will complete
the proposed system and allow automatic DR grading.
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